Applied quantum and statistical physics

Master

In Maynard (USA)

Price on request

Description

  • Type

    Master

  • Location

    Maynard (USA)

  • Start date

    Different dates available

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Physics
  • Mechanics

Course programme

Lectures: 2 sessions / week, 1.5 hours / session


Recitations: 2 sessions / week, 1 hour / session


Hagelstein, Peter L., Stephen D. Senturia, and Terry P. Orlando. Introduction to Applied Quantum and Statistical Physics. New York, NY: Wiley, 2004. ISBN: 0471202762.


There will be about ten homework sets and two quiz-completion exercises (see also Quizzes below). Homework due dates vary and are listed on the Schedule. You may use any resource available on the homework, including textbooks, and you may work with other students in developing both insight and answers. However, you are required to write up your own final solutions and MATLAB® codes. Copying a solution from another student or from a previous problem solution is not permitted. As a precaution against any misunderstanding, we suggest that if you learn the solution to a problem from another source, whether printed or human, you identify the source on your homework paper.


There will be two one-hour quizzes in class.


Quiz Dates: Ses #16 and Ses #27.


One sheet of notes is permitted at the quizzes. After completing and turning in your Quiz paper, you will be given until the start of class on the Wednesday following the Quiz to write up complete Quiz solutions as a take-home exercise. Quiz grades will be computed as the average of your in-class score and your final completed score.


There will be a 3 hour final exam.


The instructors reserve the right to use judgment instead of formulae when assigning final grades.


The calendar below provides information on the course's lecture (L), recitation (R), and quiz (Q) sessions.


Problem set 2 out


Problem set 1 due


Problem set 3 out


Problem set 2 due


Problem set 4 out


Problem set 3 due


Problem set 5 out


Problem set 4 due


Problem set 7 out


Problem set 6 due


Problem set 8 out


Problem set 7 due


Problem set 10 out


Problem set 9 due


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Applied quantum and statistical physics

Price on request