B.S.E. Electrical Engineering

Bachelor's degree

In Princeton (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Princeton (USA)

The Department of Electrical Engineering (link is external)offers an academic program of study spanning a wide range of disciplines. This program is accredited by the Engineering Accreditation Commission of ABET (link is external). All electrical engineering (ELE) students begin with a unifying foundation, after which areas of specialization range from devices to optoelectronics, to computer architecture and communication technology, to microprocessors. Students may select one of a set of suggested concentrations, or tailor their own in consultation with their faculty adviser to suit special interests.

Facilities

Location

Start date

Princeton (USA)
See map
08544

Start date

On request

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Physics
  • Wireless
  • Music
  • Programming
  • Communication Training
  • Engineering
  • Technology
  • Systems
  • Communications
  • Project
  • Logic
  • Electrical
  • Mechanics
  • Design
  • Internet
  • Networks
  • Computer Architecture
  • Computing
  • Staff

Course programme

ELE 102 New Eyes for the World: Hands-On Optical Engineering (also

EGR 103

) Not offered this year STL
This lab course introduces students to modern topics of engineering optics. Teams of students will carry out four different projects: holography, lasers, free-space optical communication, and nanotechnology. Teaches the foundations and broader societal issues of these technologies. The laboratory sessions involve hands-on training as well as experimentation and exploration. Skills acquired in this course include computer programming of user interfaces, data acquisition and interpretation, wet chemical processing, and electronics design assembly. One 90-minute lecture, one three-hour laboratory. C. Gmachl

ELE 201 Information Signals Spring STL Signals that carry information, e.g. sound, images, sensors, radar, communication, robotic control, play a central role in technology and engineering. This course teaches mathematical tools to analyze, manipulate, and preserve information signals. We discuss how continuous signals can be perfectly represented through sampling, leading to digital signals. Major focus points are the Fourier transform---how, when, and why to use it, linear time-invariant systems, modulation, and stability. We use MatLab for design projects, such as a "Shazam" music ID system. Three lectures, one laboratory. Prerequisite: knowledge of elementary calculus H. Poor

ELE 203 Electronic Circuit Design, Analysis and Implementation Spring STL Introduction to electronic theory and practice. DC and AC circuit analysis theorems and passive and active components, from resistors/capacitors/inductors to operational amplifiers. Feedback, sinusoidal steady state analysis, frequency response, resonance, diodes, transistors. Creative circuit design using light and sound outputs. Final project on bio-sensing, including design and testing of an electrocardiogram circuit to sense real heartbeats. SPICE circuit simulation is introduced and leveraged in the labs and project. Three lectures, one laboratory. Prerequisite: knowledge of freshman physics and elementary calculus N. Verma

ELE 206 Contemporary Logic Design (also

COS 306

) Fall STL
Logic circuits are at the heart of modern computing and communication chips. These deliver valuable societal solutions in several key areas: in information retrieval and processing using smart phones and cloud computing; in smart sensing and control as in emerging chips for human health care; and in critical security applications such as protecting infrastructures like the internet and energy production/distribution systems. Foundational aspects of logic design; contemporary design principles and practices. Three lectures, one laboratory. Prerequisite: an introductory programming course, or equivalent programming experience. C. Brinton

ELE 218 Learning Theory and Epistemology (See PHI 218)

ELE 222A The Computing Age (also

EGR 222A

) Not offered this year
The past several decades have seen an exponential growth in computing as reflected in modern computers as well as consumer products such as music/video players and cell phones. This course will explore the reasons for this growth through studying the core principles of computing. It will cover representation of information including video and music, the design of computers and consumer devices, and their efficient implementation using computer chips. Finally, it will examine the technological factors that will likely limit future growth and discuss the societal impact of this outcome. Two 90-minute lectures, one preceptorial. Staff

ELE 222B The Computing Age (also

EGR 222B

) Not offered this year STL
The past several decades have seen an exponential growth in computing as reflected in modern computers as well as consumer products such as music/video players and cell phones. This course will explore the reasons for this growth through studying the core principles of computing. It will cover representation of information including video and music, the design of computers and consumer devices, and their efficient implementation using computer chips. Finally, it will examine the technological factors that will likely limit future growth and discuss the societal impact of this outcome. Two 90-minute lectures, one three-hour laboratory. Staff

ELE 301 Designing Real Systems Fall This course focuses on the science, engineering, and design of the highly integrated systems that dominate many of today's devices. Analysis of systems, subsystems, and basic principles will be covered, with an emphasis on hardware-software optimization, sampling and digitization, signal and noise, feedback and control, and communication. Prerequisites: ELE 201, ELE 203, ELE 206. G. Wysocki

ELE 302 Building Real Systems Spring Comprehensive laboratory-based course in electronic system design and analysis. Covers formal methods for the design and analysis of moderately complex real-world electronic systems. Course is centered around a semester-long design project involving a computer-controlled vehicle designed and constructed by teams of two students. Integrates microprocessors, communications, and control. Three lectures, one laboratory; open laboratory during final month. Prerequisites: 206 and 301 or permission of instructor. J. Thompson

ELE 308 Electronic and Photonic Devices Fall STL Explores ways in which semiconductor devices harness and control electrons and photons to generate, store or transmit information. The basics of semiconductor electronics and photonics are introduced. Discusses diodes, transistors, LEDs, solar-cells, and lasers, which form the foundations of integrated circuits, microchips, displays, cameras, etc. Nanotechnology, a recent addition to devices and systems, is introduced. Laboratory: fundamentals of micro-and nano-fabrication, fabrication of Si integrated circuits, semiconductor light emitters, quantum devices. J. Sturm

ELE 341 Solid-State Devices Fall The physics and technology of solid-state devices. Topics include: p-n junctions and two terminal devices, transistors, silicon controlled rectifiers, field effect devices, silicon vidicon and storage tubes, metal-semiconductor contacts and Schottky barrier devices, microwave devices, junction lasers, liquid crystal devices, and fabrication of integrated circuits. Three hours of lectures. Prerequisite: 208 or the equivalent. B. Rand

ELE 342 Principles of Quantum Engineering Spring Fundamental principles of solid-state and optoelectronic device operation. Principles of quantum mechanics (Schroedinger equation, operator and matrix methods) important to a basic understanding of solid-state and quantum electronics. Topics in statistical mechanics, including distribution functions, density of states, Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. Applications to atoms, molecules, lasers, and solids, with special emphasis on semiconductors. Three hours of lectures. R. Bhatt

ELE 351 Electromagnetic Field Theory and Physical Optics Spring This course should provide the students with a broad and solid background in electromagnetics, including both statics and dynamics, as described by Maxwell's equations. Fundamental concepts of diffraction theory, Fourier optics, polarization of light, and geometrical optics will be discussed. Emphasis will be on basic engineering principles, and applications will be discussed throughout. Examples include cavities, waveguides, antennas, fiber optic communications, and imaging. Staff

ELE 352 Physical Optics Not offered this year Fundamental and practical aspects of physical optics. Lenses and ray optics, lens maker's formula, wave propagation, Fourier optics, Gaussian beams are all considered. Design and use of practical optical systems including optical beam steering in medicine, fiber optics. Three hours of lectures. Prerequisite: PHY 104. J. Fleischer

ELE 375 Computer Architecture and Organization (See COS 375)

ELE 381 Networks: Friends, Money and Bytes (also

COS 381

) Fall
This course is oriented around 20 practical questions in the social, economic, and technological networks in our daily lives. How does Google sell ad spaces and rank webpages? How does Netflix recommend movies and Amazon rank products? How do I influence people on Facebook and Twitter? Why doesn't the Internet collapse under congestion, and does it have an Achilles heel? Why does each gigabyte of mobile data cost $10, but Skype is free? How come Wi-Fi is slower at hotspots than at home, and what is inside the cloud of iCloud? In formulating and addressing these questions, we introduce the fundamental concepts behind the networking industry. Staff

ELE 386 Cyber Security (also

EGR 386

) Not offered this year STN
The technology underlying secure transactions and safe interactions in a public Internet and wireless world. Humans interact daily with each other, with information, and with services through cyberspace. Topics include policy, economic, and social issues related to cyber security needs such as confidentiality, data integrity, user authentication, trust, non-repudiation, availability, privacy and anonymity, case studies in electronic commerce, denial of service attacks, viruses and worms, digital rights management, surveillance, and cyber-terrorism. Two 90-minute lectures. Staff

ELE 391 The Wireless Revolution: Telecommunications for the 21st Century (also

EGR 391

) Not offered this year STN
This interdisciplinary course addresses technological, regulatory, economic, and social issues arising in the rapidly developing field of wireless communications. The course introduces students to a major technological trend that will be a significant force in worldwide commercial and social development throughout the 21st century. Prerequisites: MAT 103 or permission of instructor. Two 90-minute lectures. Staff

ELE 396 Introduction to Quantum Computing (also

COS 396

) Fall
This course will introduce the matrix form of quantum mechanics and discuss the concepts underlying the theory of quantum information. Some of the important algorithms will be discussed, as well as physical systems which have been suggested for quantum computing. Three lectures. Prerequisite: Linear algebra at the level of MAT 202, 204, 217, or the equivalent. A. Houck

ELE 397 Junior Independent Work Fall Provides an opportunity for a student to concentrate on a "state-of-the-art" project in electrical engineering. Topics may be selected from suggestions by faculty members or proposed by the student. The final choice must be approved by the faculty member. P. Prucnal

ELE 398 Junior Independent Work Spring Provides an opportunity for a student to concentrate on a "state-of-the-art" project in electrical engineering. Topics may be selected from suggestions by faculty members or proposed by the student. The final choice must be approved by the faculty member. P. Prucnal

ELE 404 Electronic Circuits for Biomedical Application Not offered this year Start by analyzing biological systems to understand the origins of some of the signals that they present. Develop circuit models of these systems to determine what instrumentation circuits are required at the interface so that the signals can be reliably acquired. Study analog circuit topologies based on MOSFETs for low-noise instrumentation and processing of the signals. Study digital topologies based on MOSFETs for extensive computations on the biological signals. Analyze the trade-offs between the analog and digital topologies. Emphasis is on design and analysis using circuit simulators. Staff

ELE 411 Sequential Decision Analytics and Modeling (See ORF 411)

ELE 431 Solar Energy Conversion (See ENE 431)

ELE 432 Information Security (See COS 432)

ELE 441 Solid-State Physics I (also

ENE 441

) Fall
An introduction to the properties of solids. Theory of free electrons--classical and quantum. Crystal structure and methods of determination. Electron energy levels in a crystal: weak potential and tight-binding limits. Classification of solids--metals, semiconductors, and insulators. Types of bonding and cohesion in crystals. Lattice dynamics, phonon spectra, and thermal properties of harmonic crystals. Three hours of lectures. Prerequisite: 342, or PHY 208 and 305, or equivalent. R. Bhatt

ELE 442 Solid-State Physics II (also

ENE 442

) Not offered this year
Electronic structure of solids. Electron dynamics and transport. Semiconductors and impurity states. Surfaces and interfaces. Dielectric properties of insulators. Electron-electron, electron-phonon, and phonon-phonon interactions. Anharmonic effects in crystals. Magnetism. Superconductivity. Alloys. Three hours of lectures. Prerequisites: 441 or equivalent. Staff

ELE 453 Optical Electronics Fall Electromagnetic waves. Gaussian beams. Optical resonators. Interaction of light and matter. Lasers. Mode locking and Q-switching in lasers. Three hours of lectures. Prerequisites: 351 or 352 or PHY 304 or permission of instructor. A. Rodriguez

ELE 455 Mid-Infrared Technologies for Health and the Environment (also

CEE 455

/

MAE 455

/

MSE 455

) Not offered this year
This course is designed to give juniors, seniors, and interested graduate students a comprehensive and interdisciplinary introduction into mid-infrared sensing, its applications, and its technological foundations. Topics include: materials, light sources, lasers and detectors for the mid-infrared; spectroscopy and sensing; sensing systems and sensor networks. It addresses such important issues as global warming, policy making, engineering solutions to global challenges, environmental sensing, breath analysis and health applications, and sensing in homeland security. Two 90-minute lectures. Staff

ELE 458 Photonics and Light Wave Communications Fall Introduction to fiber-optic communication systems. Optical detectors and receivers. Design and performance of direct detection systems. Coherent light wave systems. Multichannel WDM communication systems. Optical amplifiers. Soliton communication systems. Three hours of lectures. Prerequisite: 351 or 352. P. Prucnal

ELE 461 Design with Nanotechnologies Not offered this year Introduction to nanotechnologies; threshold logic/majority logic and their applications to RTDs, QCA and SETs; nanowire based crossbars and PLAs; carbon nanotube based circuits; double-gate CMOS-based circuits; reversible logic for quantum computing; non-volatile memory; nanopipelining; testing; and defect tolerance. Two 90-minute lectures. Prerequisite: ELE 206. Staff

ELE 462 Design of Very Large-Scale Integrated (VLSI) Systems (also

COS 462

) Fall
The implementation of digital systems using integrated circuit technology. Emphasis on structured design methodologies for VLSI systems. Topics include: design rules for metal oxide semiconductor (MOS) integrated circuits, implementation of common digital components, tools for computer-aided design, novel architectures for VLSI systems. Three hours of lectures. Prerequisite: 206. N. Verma

ELE 465 Switching and Sequential Systems Not offered this year . Theory of digital computing systems

B.S.E. Electrical Engineering

Price on request