A.B. Geosciences

Bachelor's degree

In Princeton (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Princeton (USA)

The intellectual excitement of modern geosciences is fueled by our exploration of the dynamic forces and delicate balances that mold our planet and have rendered it conducive to life for much of its history. Our landscape is continually reshaped by the movement of cold continents atop the hot, viscous mantle, and our lives are altered by the earthquakes and volcanic eruptions that attend their collision. Rocks that cover the Earth's surface sink to great depths and transform under enormous temperatures and pressures, perhaps to be uplifted as mountains and exposed to future generations by the forces of erosion. The ocean and atmosphere engage in a continuous and complex dialogue that controls the Earth's climate. Chemical reactions operating within microorganisms and on a variety of mineral and other natural surfaces are integrated into large geochemical fluxes, which distribute the resources needed for life, and life in turn alters these fluxes. This process operates within the framework of biological evolution, in which diverse organisms appear, evolve, and vanish, sometimes leaving a transfigured world in their wake. All of these processes influence our daily lives in profound and surprising ways.

Facilities

Location

Start date

Princeton (USA)
See map
08544

Start date

On request

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Physics
  • Physics Chemistry
  • Climate
  • Systems
  • Global
  • Climate Change
  • Geophysics
  • Biology

Course programme

GEO 102A Climate: Past, Present, and Future (also

ENV 102A

/

STC 102A

) Fall STN
Which human activities are changing our climate, and does climate change constitute a significant problem? We will investigate these questions through an introduction to climate processes and an exploration of climate from the distant past to today. We will also consider the implications of climate change for the global environment and humans. Intended to be accessible to students not concentrating in science or engineering. Two 90-minute lectures per week. D. Sigman

GEO 102B Climate: Past, Present, and Future (also

ENV 102B

/

STC 102B

) Fall STL
Which human activities are changing our climate, and does climate change constitute a significant problem? We will investigate these questions through an introduction to climate processes and an exploration of climate from the distant past to today. We will also consider the implications of climate change for the global environment and humans. Intended to be accessible to students not concentrating in science or engineering. Two 90-minute lectures, one three-hour laboratory per week. D. Sigman

GEO 103 Natural Disasters Spring STL An introduction to natural (and some society-induced) hazards and the importance of public understanding of the issues related to them. Emphasis is on the geological processes that underlie the hazards, with some discussion of relevant policy issues. Principal topics: Earthquakes, volcanoes, landslides, tsunami, hurricanes, floods, meteorite impacts, global warming. Intended primarily for non-science majors. Three lectures, one three-hour laboratory. A. Rubin

GEO 202 Ocean, Atmosphere, and Climate Spring STL The ocean and the atmosphere control Earth's climate, and in turn climate and atmospheric changes influence the ocean. We explore what sets the temperature of Earth's atmosphere and the connections between oceanic and atmospheric circulations including exchanges of heat and carbon. We then investigate how these circulations control marine ecosystems and the cycling of chemicals in the ocean. The final part of the course focuses on human impacts, including changes in coastal environments and the acidification resulting from increased atmospheric carbon dioxide. One three-hour laboratory complements lectures. L. Resplandy

GEO 203 Fundamentals of Solid Earth Science (also

ENE 203

) Fall QR
A quantitative introduction to Solid Earth system science, focusing on the underlying physical and chemical processes and their geological and geophysical expression. Through the course we investigate the Earth starting from its basic constituents and continue through its accretion, differentiation and evolution and discuss how these processes create and sustain habitable conditions on Earth's surface. Topics include nucleosynthesis, planetary thermodynamics, plate tectonics, seismology, geomagnetism, petrology, sedimentology and the global carbon cycle. Two field trips included. J. Irving

GEO 207 A Guided Tour of the Solar System (also

AST 207

) Not offered this year QR
Examines the major bodies of our solar system, emphasizing their surface features, internal structures, and atmospheres. Topics include the origin of the solar system, habitability of planets, and the role of impacts in planetary evolution. Terrestrial and giant planets will be studied as well as satellites, comets, and asteroids. Recent discoveries from planetary missions are emphasized. This course is aimed primarily at non-science majors. Three lectures, this course is normally taught in the fall. T. Duffy

GEO 255A Life in the Universe (also

AST 255A

/

CHM 255A

) Fall STN
Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures. Track A will be required to take a mid-term exam during Fall break. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission. T. Onstott, C. Chyba, A. Link

GEO 255B Life in the Universe (also

AST 255B

/

EEB 255B

/

CHM 255B

) Not offered this year STL
Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures and field training in Yellowstone National Park over Fall break is required. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission. T. Onstott, C. Chyba, A. Link

GEO 300 Summer Course in Geologic Field Methods Spring STL Introduction to modern geologic field methods, with local and regional problems studied from a residential base camp. One option is the five week University of Houston-Yellowstone Bighorn Research Association (YBRA) course based in Red Lodge, Montana, run by the University of Houston. Alternatively, students may attend field courses offered by other institutions after obtaining approval from the Undergraduate Work Committee of the Department of Geosciences. Financial aid is available through the Geosciences Department. A. Maloof, L. Goodell

GEO 311 Global Air Pollution (See CEE 311)

GEO 333 Chemistry of the Environment (See CHM 333)

GEO 361 Earth's Atmosphere (also

ENV 361

/

CEE 360

) Fall STN
This class discusses fundamental aspects of Earth's climate with a focus on the fundamental atmospheric processes that render Earth "habitable," and how they may respond to the forcing originating from natural (such as volcanoes) and anthropogenic (such as emission of carbon dioxide and ozone-depleting gases) processes. S. Fueglistaler

GEO 362 Earth History (also

ENV 362

) Spring STN
The chemical cycles of ocean and atmosphere and their interaction with Earth's biota. Topics include: the origin of the ocean's salt; the major and biologically active gases in the atmosphere and ocean; nutrients and ocean fertility; the global carbon cycle; the reactive chemistry of the atmosphere. Prerequisites: CHM 201/202 or higher; GEO 202 and/or GEO 361; or permission of the instructor. Three lectures. J. Higgins

GEO 363 Environmental Chemistry: Chemistry of the Natural Systems (also

CHM 331

/

ENV 331

) Fall STN
Covers topics including origin of elements; formation of the Earth; evolution of the atmosphere and oceans; atomic theory and chemical bonding; crystal chemistry and ionic substitution in crystals; reaction equilibria and kinetics in aqueous and biological systems; chemistry of high-temperature melts and crystallization process; and chemistry of the atmosphere, soil, marine, and riverine environments. The biogeochemistry of contaminants and their influence on the environment will also be discussed. Two 90-minute lectures. Prerequisite: one term of college chemistry or instructor's permission. S. Myneni

GEO 365 Evolution and Catastrophes Fall STN This course introduces students to the evolution of life and mass extinctions based on a broad survey of major events in Earth history as revealed by the fossil record. Concepts and techniques of paleontology are applied to all aspects, including colonization of the oceans, invasion of land, mass extinctions and evolutionary radiations. The roles of major catastrophes in the history of life are evaluated, including meteorite impacts, volcanism, climate change, and oceanic anoxia. One three-hour lecture. Prerequisite: One 200 level or higher GEO course. G. Keller

GEO 366 Climate Change: Impacts, Adaptation, Policy (also

ENV 339

/

WWS 451

/

ENE 366

) Spring STN
An exploration of the potential consequences of human-induced climate change and their implications for policy responses, focusing on risks to people, societies, and ecosystems. As one example: we examine the risk to coastal cities from sea level rise, and measures being planned and implemented to enable adaptation. In addition, we explore local, national, and international policy initiatives to reduce greenhouse-gas emissions. The course assumes students have a basic background in the causes of human-induced climate change and the physical science of the climate system. Two 90-minute lectures, one preceptorial M. Oppenheimer

GEO 370 Sedimentology (also

ENV 370

/

CEE 370

) Spring STL
A treatment of the physical and chemical processes that shape Earth's surface, such as solar radiation, i.e., deformation of the solid Earth, and the flow of water (vapor, liquid, and solid) under the influence of gravity. In particular, the generation, transport, and preservation of sediment in response to these processes are studied in order to better read stories of Earth history in the geologic record and to better understand processes involved in modern and ancient environmental change. Prerequisites: MAT 104, PHY 103, CHM 201, or equivalents. Two lectures, two laboratories. A. Maloof

GEO 371 Global Geophysics (also

PHY 371

) Fall STN
An introduction to the fundamental principles of global geophysics. Taught on the chalkboard, in four parts, the material builds up to form a final coherent picture of (how we know) the structure and evolution of the solid Earth: gravity, magnetism, seismology, and geodynamics. The emphasis is on physical principles including the mathematical derivation and solution of the governing equations. Prerequisites: MAT 201 or 203, PHY 103/104 or PHY 105/106. Two 90-minute lectures. F. Simons

GEO 372 Rocks Spring STL This course serves as an introduction to the processes that govern the distribution of different rocks and minerals in the Earth. Students learn to make observations from the microscopic to continental scale and relate these to theoretical and empirical thermodynamics. The goal is to understand the chemical, structural, and thermal influences on rock and mineral formation and how this in turn influences the plate tectonic evolution of our planet. This course has two lectures, one lab and a required Spring Break fieldtrip. Prerequisite: One introductory GEO course and GEO 378. B. Schoene

GEO 373 Structural Geology Fall STL The nature and origin of the deformed rocks composing the crust of Earth considered at scales ranging from atomic to continental. Tectonics and regional geology of North America. Two lectures, one lab and a required Fall Break fieldtrip. B. Schoene

GEO 374 Planetary Systems: Their Diversity and Evolution (also

AST 374

) Spring STN
Examines the diversity of recently discovered planetary systems in terms of fundamental physical and chemical processes and what this diversity implies about the origin and evolution of our own planetary system. Topics include: the formation and dynamics of planets and satellites, planetary migration, the evolution of planetary interiors, surfaces and atmospheres, the occurrence of water and organics, and the habitability of planets and planetary systems. Recent discoveries from planetary missions and extrasolar planet observations are emphasized. Prerequisites: GEO 207, 255, or instructor's permission. Two 90-minute lectures. T. Onstott

GEO 375 Environmental Fluid Mechanics (See CEE 305)

GEO 417 Environmental Microbiology (also

CEE 417

/

EEB 419

) Spring
The study of microbial biogeochemistry and microbial ecology. Beginning with the physical/chemical characteristics and constraints of microbial metabolism, we will investigate the role of bacteria in elemental cycles, in soil, sediment, and marine and freshwater communities, in bioremediation and chemical transformations. Prerequisites: One 300-level course in chemistry or biology, or instructor's permission. Two 90-minute classes, this course is normally offered in the Spring. B. Ward

GEO 418 Environmental Aqueous Geochemistry (also

CHM 418

) Not offered this year
Application of quantitative chemical principles to the study of natural waters. Includes equilibrium computations, weathering and diagenetic processes, precipitation of chemical sediments, and pollution of natural waters. Two lectures. Prerequisite: one year of college chemistry. Previous or concurrent enrollment in CHM 306 recommended. A. Morel-Kraepiel

GEO 419 Physics and Chemistry of Earth's Interior (also

PHY 419

) Spring
The Earth is a physical system whose past and present state can be studied within the framework of physics and chemistry. Topics include current concepts of geophysics and the physics and chemistry of Earth materials; origin and evolution of the Earth; and nature of dynamic processes in its interior. One emphasis is to relate geologic processes on a macroscopic scale to the fundamental materials properties of minerals and rocks. Three lectures. Prerequisites: one year of college-level chemistry or physics (preferably both) and calculus. Offered alternately with 424. T. Duffy

GEO 420 Topics in Earth Science These courses cover one or more advanced topics in modern Earth science. They are offered only when there is an opportunity to present material not included in the established curriculum; the subjects vary from year to year. Three classes or a three-hour seminar. Staff

GEO 422 Data, Models, and Uncertainty in the Natural Sciences Fall QR This course is for students who want to turn observations into models and subsequently evaluate their uniqueness and uncertainty. Three main topics, taught on the chalkboard, are elementary statistics (inference), heuristic time series (Fourier) analysis, and model parameter estimation via matrix inverse methods. Prerequisites: MAT 201 and 202. Theory lectures and classroom Matlab instruction in alternating weeks. Two 90-minute lectures/classes. F. Simons

GEO 424 Introductory Seismology (also

CEE 424

/

ENE 425

) Spring STN
Fundamentals of seismology and seismic wave propagation. Introduction to acoustic and elastic wave propagation concepts, observational methods, and inferences that can be drawn from seismic data about the deep planetary structure of the Earth, as well as about the occurrence of oil and gas deposits in the crust. Prerequisites: PHY 104 and MAE 305 (can be taken concurrently), or permission of the instructor. Two 90-minute classes. J. Tromp

GEO 425 Introduction to Ocean Physics for Climate (also

MAE 425

) Fall
The study of the oceans as a major influence on the atmosphere and the world environment. Ocean circulation and the oceans' properties. The Coriolis-dominated equations of motion, the thermocline, wind-driven and thermohaline-driven circulation, and oceanic tracers. Three lectures. Prerequisite: MAT 201, MAT 202 or equivalent. G. Vecchi

A.B. Geosciences

Price on request