Brightening up life: harnessing the power of fluorescence imaging to observe biology in action

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

One summer in the 1960s a young Japanese researcher, with the help of a few high school students, chopped up ten thousand jellyfish. As a by-product of this harvest, they isolated a green fluorescent protein (GFP). Since then, GFP has triggered a revolution in our understanding of gene expression and signaling in live cells. In this seminar, we will examine how this small protein generates fluorescence, i.e. absorbs light of one wavelength and emits light of a longer wavelength. We will discuss how the color palette has been extended from green to blue, red and many other colors, based on protein engineering of GFP and the study of vividly colorful coral reefs. We will then investigate how these fluorescent proteins can be used to track the motion of DNA, RNA and protein in living cells, as well as to see waves of signaling molecules propagate across a cell. GFP is also a powerful tool for fluorescent imaging of whole organisms, from worms to mice, and we will see how it has been used in tracking the spread of cancer cells, controlling malaria and in understanding how neuronal connections form. In this seminar, we will explore this wonderful protein as well as other important methods and reagents for fluorescent imaging.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Engineering
  • Green
  • School
  • Imaging
  • Biology

Course programme

Lectures: 1 session / week, 2 hours / session


One summer in the 1960s a young Japanese researcher, with the help of a few high school students, chopped up ten thousand jellyfish. As a by-product of this harvest, they isolated a green fluorescent protein (GFP). Since then, GFP has triggered a revolution in our understanding of gene expression and signaling in live cells. In this seminar, we will examine how this small protein generates fluorescence, i.e. absorbs light of one wavelength and emits light of a longer wavelength. We will discuss how the color palette has been extended from green to blue, red and many other colors, based on protein engineering of GFP and the study of vividly colorful coral reefs. We will then investigate how these fluorescent proteins can be used to track the motion of DNA, RNA and protein in living cells, as well as to see waves of signaling molecules propagate across a cell. GFP is also a powerful tool for fluorescent imaging of whole organisms, from worms to mice, and we will see how it has been used in tracking the spread of cancer cells, controlling malaria and in understanding how neuronal connections form. In this seminar, we will explore this wonderful protein as well as other important methods and reagents for fluorescent imaging.


An essential tool in science, as in life, is learning how to evaluate evidence to come to a conclusion. In biology evidence can be complex and can appear to be contradictory. This course is designed to familiarize you with the primary scientific literature, where data are presented, so that you can decide for yourself whether other people's conclusions are well-founded, uncertain, or wrong. The class should be highly interactive. You will be encouraged to express your opinions. Each week we will discuss two primary research papers. We will first consider the objective of the paper and the methods whereby conclusions were reached. We will look carefully at the data and examine whether the authors' conclusions are compelling.


The course is based on discussions and contributions in the class. Therefore attendance is essential.


Grading is pass/fail. Attending all classes and completing all assignments satisfactorily will result in a pass.


There will be two assignments in this class:


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Brightening up life: harnessing the power of fluorescence imaging to observe biology in action

Price on request