Cellular & Molecular Physiology

PhD

In New Haven (USA)

Price on request

Description

  • Type

    PhD

  • Location

    New haven (USA)

Professors Peter Aronson (Internal Medicine/Nephrology), Angelique Bordey (Neurosurgery), Thomas Brown (Psychology), Cecilia Canessa, Lloyd Cantley (Internal Medicine/Nephrology), Michael Caplan, Nancy Carrasco, Lawrence Cohen, Marie Egan (Pediatrics), Barbara Ehrlich (Pharmacology), Anne Eichmann (Internal Medicine/Cardiology), Biff Forbush III, John Geibel (Surgery), Leonard Kaczmarek (Pharmacology), George Lister (Pediatrics), Pramod Mistry (Pediatrics), Michael Nitabach, Vincent Pieribone, Patricia Preisig (Internal Medicine/Nephrology), W. Mark Saltzman (Biomedical Engineering), Joseph Santos-Sacchi (Surgery/Otolaryngology), Gerald Shulman (Internal Medicine/Endocrinology), Fred Sigworth, Susumu Tomita, Fred Wright (Internal Medicine/Nephrology), Lawrence Young (Internal Medicine/Cardiology), David Zenisek, Z. Jimmy Zhou (Ophthalmology & Visual Science)

Facilities

Location

Start date

New Haven (USA)
See map
06520

Start date

On request

About this course

Fields of study range from cellular and molecular physiology to integrative medical biology. Areas of current interest include: ion channels, transporters and pumps, membrane biophysics, cellular and systems neurobiology, protein trafficking, epithelial transport, signal transduction pathways, cardiovascular biology, sensory physiology, metabolism, organ physiology, genetic models of human disease, pathophysiology, structural biology of membrane proteins, and physiological genomics.

We welcome applications from students with backgrounds in the biological, chemical, and/or physical sciences. These include majors in biology, biochemistry, physiology, genetics, chemistry, physics, mathematics, engineering, computer science, and psychology. Courses in biology, biochemistry, organic and physical chemistry, and mathematics through calculus are recommended. The GRE General Test is required. To enter the Ph.D . program, students will apply to the Molecular Medicine, Pharmacology, and Physiology track within the interdepartmental graduate program in Biological and Biomedical...

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Nephrology
  • Medical training
  • Medical
  • Physiology
  • Primary
  • Pathology
  • Surgery
  • Cardiology
  • Pharmacology

Course programme

Courses

C&MP 550a / ENAS 550a / MCDB 550a / PHAR 550a, Physiological SystemsMark Saltzman and Stuart Campbell

The course develops a foundation in human physiology by examining the homeostasis of vital parameters within the body, and the biophysical properties of cells, tissues, and organs. Basic concepts in cell and membrane physiology are synthesized through exploring the function of skeletal, smooth, and cardiac muscle. The physical basis of blood flow, mechanisms of vascular exchange, cardiac performance, and regulation of overall circulatory function are discussed. Respiratory physiology explores the mechanics of ventilation, gas diffusion, and acid-base balance. Renal physiology examines the formation and composition of urine and the regulation of electrolyte, fluid, and acid-base balance. Organs of the digestive system are discussed from the perspective of substrate metabolism and energy balance. Hormonal regulation is applied to metabolic control and to calcium, water, and electrolyte balance. The biology of nerve cells is addressed with emphasis on synaptic transmission and simple neuronal circuits within the central nervous system. The special senses are considered in the framework of sensory transduction. Weekly discussion sections provide a forum for in-depth exploration of topics. Graduate students evaluate research findings through literature review and weekly meetings with the instructor.
MWF 9:25am-10:15am

C&MP 560b / ENAS 570b / MCDB 560b / PHAR 560b, Cellular and Molecular Physiology: Molecular Machines in Human DiseaseEmile Boulpaep

The course focuses on understanding the processes that transfer molecules across membranes at the cellular, molecular, biophysical, and physiological levels. Students learn about the different classes of molecular machines that mediate membrane transport, generate electrical currents, or perform mechanical displacement. Emphasis is placed on the relationship between the molecular structures of membrane proteins and their individual functions. The interactions among transport proteins in determining the physiological behaviors of cells and tissues are also stressed. Molecular motors are introduced and their mechanical relationship to cell function is explored. Students read papers from the scientific literature that establish the connections between mutations in genes encoding membrane proteins and a wide variety of human genetic diseases.
MWF 9:25am-10:15am

C&MP 580b, Mitochondrial Bioenergetics and Intermediary MetabolismRichard Kibbey and Rachel Perry

A comprehensive introduction to the fundamentals of mitochondrial physiology and pathophysiology. Topics include glucose, lipid, amino acid, and cholesterol metabolism; mitochondrial bioenergetics; flux modeling; inherited and acquired metabolic disorders; and common methods used to characterize metabolism. In addition to these central topics, students gain experience in reviewing papers and critically evaluating experimental design and implementation. The material is presented in a mixed lecture/discussion format. Open to graduate and medical students. No prerequisites, but a basic knowledge of biochemistry is assumed.
WF 10:30am-11:45am

C&MP 600a or b, Medical Physiology Case ConferencesStaff

Two-term course taught in groups of ten to twelve students by the same group leader(s) throughout the year. Workshop format permits students to apply basic concepts of physiology to clinical syndromes and disease processes. Students are expected to participate actively in a weekly discussion of a clinical case that illustrates principles of human physiology and pathophysiology at the whole-body, system, organ, cellular, or molecular level. Prerequisites: C&MP 550 and permission of the instructor. Credit for full year only.
HTBA

C&MP 610a, Medical Research Scholars Program: Mentored Clinical ExperienceErica Herzog

The goals of the course are to introduce MRSP students to aspects of clinically important human diseases. Students explore each disease over three one-and-one-half-hour sessions led by a clinician-scientist who is an expert in the relevant organ system. Students explore two disease processes per term. The first of the three sessions is devoted to a discussion of the clinical presentation, natural history, pathology, epidemiology, treatment, and prognosis of the disease process. During this session students have the opportunity to view gross or microscopic specimens of diseased tissue in association with members of the Pathology faculty. Students are assigned readings in pathology, pathophysiology, and clinical texts to prepare for the first class session. The second session focuses on translational aspects of the disease process. Students read and present papers relevant to the molecular basis of the disease and cutting-edge approaches to its therapy. In the third session students meet with patients who have experienced the disease and/or visit and explore facilities associated with diagnosis and treatment of the disease process. Prior to the third session students receive guidance as to what they will observe and how to approach the experience; and at the end of the session, the group discusses its thoughts and impressions. Students are expected to prepare for sessions, to participate actively, and to be scrupulously respectful of patients and patient facilities.
HTBA

C&MP 630a or b / PATH 680a or b / PHAR 502a or b, Seminar in Molecular Medicine, Pharmacology, and PhysiologyStaff

Readings and discussion on a diverse range of current topics in molecular medicine, pharmacology, and physiology. The class emphasizes analysis of primary research literature and development of presentation and writing skills. Contemporary articles are assigned on a related topic every week, and a student leads discussions with input from faculty who are experts in the topic area. The overall goal is to cover a specific topic of medical relevance (e.g., cancer, neurodegeneration) from the perspective of three primary disciplines (i.e., physiology: normal function; pathology: abnormal function; and pharmacology: intervention).
HTBA

C&MP 650b / PATH 660b / PHAR 580b, The Responsible Conduct of ResearchBarbara Ehrlich

Organized to foster discussion, the course is taught by faculty in the Pharmacology, Pathology, and Physiology departments and two or three senior graduate students. Each session is based on case studies from primary literature, reviews, and two texts: Francis Macrina's Scientific Integrity and Kathy Barker's At the Bench. Each week, students are required to submit a reaction paper discussing the reading assignment. Students take turns leading the class discussion; a final short paper on a hot topic in bioethics is required.
Th 11am-12:15pm

C&MP 710b / MB&B 710b, Electron Cryo-Microscopy for Protein Structure DeterminationFrederick Sigworth and Charles Sindelar

Understanding cellular function requires structural and biochemical studies at an ever-increasing level of complexity. The course is an introduction to the concepts and applications of high-resolution electron cryo-microscopy. This rapidly emerging new technique is the only method that allows biological macromolecules to be studied at all levels of resolution from cellular organization to near atomic detail.  ½ Course cr
TTh 9am-10:15am

Cellular & Molecular Physiology

Price on request