Dynamics of complex systems: biological and environmental coevolution preceding the cambrian explosion

Master

In Maynard (USA)

Price on request

Description

  • Type

    Master

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course features a complete reading list and student presentation topics in the assignments section.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Systems

Course programme

Lectures: 1 session / week, 2 hours / session


Dynamics of Complex Systems is an introduction to theoretical studies of systems of many interacting components, the individual dynamics of which may be simple, but the collective dynamics of which are often nonlinear and analytically intractable. Format includes both pedagogical lectures and round-table reviews of current literature. Subjects of interest include: problems in natural science (e.g., geology, ecology, and biology) where quantitative theory is still in development; problems in physics, such as turbulence, that demonstrate powerful concepts such as scaling and universality; and modern computational methods for the simulation and study of such problems. Discussions will be in context of contemporary experimental or observational data.


This seminar will focus on dynamical change in biogeochemical cycles accompanying early animal evolution -- beginning with the time of the earliest known microscopic animal fossils (~600 million years ago) and culminating (~100 million years later) with the rapid diversification of marine animals known as the "Cambrian explosion." Recent work indicates that this period of intense biological evolution was both a cause and an effect of changes in global biogeochemical cycles. We will seek to identify and quantify such coevolutionary changes. Lectures and discussions will attempt to unite the perspectives of quantitative theory, organic geochemistry, and evolutionary biology.


Differential Equations (18.03), Physics II (8.02)


Students are expected to come to each class prepared to discuss the readings. At the culmination of the course, students present recent papers in the subject to their classmates.


Grading for this course is based 100% on class participation and presentations.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Dynamics of complex systems: biological and environmental coevolution preceding the cambrian explosion

Price on request