Electrical and Computer Engineering - undergraduate program

Postgraduate

In San Diego (USA)

higher than £ 9000

Description

  • Type

    Postgraduate

  • Location

    San diego (USA)

Program outcomes have been established based on the Program Educational Objectives. Graduates of the ECE Program in Electrical Engineering are expected to have

Facilities

Location

Start date

San Diego (USA)
See map

Start date

On request

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Probability
  • Programming
  • Bipolar
  • Engineering
  • Technology
  • Systems
  • Communications
  • Project
  • Materials
  • Simulation
  • Logic
  • Electrical
  • Design
  • Computer Engineering
  • Statistics
  • Object-oriented training
  • Testing
  • Object oriented training
  • Credit
  • Induction

Course programme

Electrical and Computer Engineering (ECE)

[ undergraduate program | graduate program | faculty ]

All courses, faculty listings, and curricular and degree requirements described herein are subject to change or deletion without notice.

Courses

For course descriptions not found in the UC San Diego General Catalog 2019–20, please contact the department for more information.

The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes require a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the department before relying on the schedule below. For the names of the instructors who will teach the course, please refer to the quarterly Schedule of Classes. The departmental website includes the present best estimate of the schedule of classes for the entire academic year.

Lower Division

ECE 5. Introduction to Electrical and Computer Engineering (4)

An introduction to electrical and computer engineering. Topics include circuit theory, assembly, and testing, embedded systems programming and debugging, transducer mechanisms and interfacing transducers, signals and systems theory, digital signal processing, and modular design techniques. Prerequisites: priority enrollment given to engineering majors EC04, EC26, EC27, EC28, and EC37.

ECE 15. Engineering Computation (4)

Students learn the C programming language with an emphasis on high-performance numerical computation. The commonality across programming languages of control structures, data structures, and I/O is also covered. Techniques for using Matlab to graph the results of C computations are developed. Prerequisites: a familiarity with basic mathematics such as trigonometry functions and graphing is expected but this course assumes no prior programming knowledge.

ECE 16. Rapid Hardware and Software Design for Interfacing with the World (4)

Students are introduced to embedded systems concepts with structured development of a computer controller based on electromyogram (EMG) signals through four lab assignments through the quarter. Key concepts include: sampling, signal processing, communication, and real-time control. Students will apply their prior knowledge in C (from ECE15) to program microcontrollers and will engage in data analysis using the Python programming language. Prerequisites: MAE 8 or CSE 8B or CSE 11 or ECE 15.

ECE 17. Object-Oriented Programming: Design and Development with C++ (4)

This course combines the fundamentals of object-oriented design in C++, with the programming, debugging, and testing practices used by modern software developers. Emphasizes the use of object-oriented techniques to model and reason about system design, and using modern C++ idioms, design patterns, and the Standard Template Library (STL) to develop solutions to systems engineering challenges that are more reliable, robust, scalable, and secure. Prerequisites: CSE 8B or CSE 11 or ECE 15.

ECE 25. Introduction to Digital Design (4)

This course emphasizes digital electronics. Principles introduced in lectures are used in laboratory assignments, which also serve to introduce experimental and design methods. Topics include Boolean algebra, combination and sequential logic, gates and their implementation in digital circuits. (Course materials and/or program fees may apply.) Prerequisites: none.

ECE 30. Introduction to Computer Engineering (4)

The fundamentals of both the hardware and software in a computer system. Topics include: representation of information, computer organization and design, assembly and microprogramming, current technology in logic design. Prerequisites: ECE 15 and 25 with grades of C– or better.

ECE 35. Introduction to Analog Design (4)

Fundamental circuit theory concepts, Kirchoff’s voltage and current laws, Thevenin’s and Norton’s theorems, loop and node analysis, time-varying signals, transient first order circuits, steady-state sinusoidal response. MATH 20C and PHYS 2B must be taken concurrently. Program or materials fees may apply. Prerequisites: MATH 18, 20A–B, and PHYS 2A.

ECE 45. Circuits and Systems (4)

Steady-state circuit analysis, first and second order systems, Fourier Series and Transforms, time domain analysis, convolution, transient response, Laplace Transform, and filter design. Prerequisites: ECE 35.

ECE 65. Components and Circuits Laboratory (4)

Introduction to linear and nonlinear components and circuits. Topics will include: two terminal devices, bipolar and field-effect transistors, and large and small signal analysis of diode and transistor circuits. (Program or materials fees may apply.) Prerequisites: ECE 35.

ECE 85. iTunes 101: A Survey of Information Technology (4)

Topics include how devices such as iPods and iPhones generate, transmit, receive and process information (music, images, video, etc.), the relationship between technology and issues such as privacy and “net neutrality,” and current topics related to information technology. Prerequisites: none.

ECE 87. Freshman Seminar (1)

The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman Seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisites: none.

ECE 90. Undergraduate Seminar (1)

This seminar class will provide a broad review of current research topics in both electrical engineering and computer engineering. Typical subject areas are signal processing, VLSI design, electronic materials and devices, radio astronomy, communications, and optical computing. Prerequisites: none.

Upper Division

ECE 100. Linear Electronic Systems (4)

Linear active circuit and system design. Topics include frequency response; use of Laplace transforms; design and stability of filters using operational amplifiers. Integrated lab and lecture involves analysis, design, simulation, and testing of circuits and systems. Program or materials fees may apply. Prerequisites: ECE 45 and ECE 65. ECE 65 may be taken concurrently.

ECE 101. Linear Systems Fundamentals (4)

Complex variables. Singularities and residues. Signal and system analysis in continuous and discrete time. Fourier series and transforms. Laplace and z-transforms. Linear Time Invariant Systems. Impulse response, frequency response, and transfer functions. Poles and zeros. Stability. Convolution. Sampling. Aliasing. Prerequisites: ECE 45 with grade of C– or better.

ECE 102. Introduction to Active Circuit Design (4)

Nonlinear active circuits design. Nonlinear device models for diodes, bipolar and field-effect transistors. Linearization of device models and small-signal equivalent circuits. Circuit designs will be simulated by computer and tested in the laboratory. Prerequisites: ECE 65 and ECE 100. ECE 100 can be taken concurrently.

ECE 103. Fundamentals of Devices and Materials (4)

Introduction to semiconductor materials and devices. Semiconductor crystal structure, energy bands, doping, carrier statistics, drift and diffusion, p-n junctions, metal-semiconductor junctions. Bipolar junction transistors: current flow, amplification, switching, nonideal behavior. Metal-oxide-semiconductor structures, MOSFETs, device scaling. Prerequisites: ECE 65 and PHYS 2D or PHYS 4D and 4E.

ECE 107. Electromagnetism (4)

Electrostatics and magnetostatics; electrodynamics; Maxwell’s equations; plane waves; skin effect. Electromagnetics of transmission lines: reflection and transmission at discontinuities, Smith chart, pulse propagation, dispersion. Rectangular waveguides. Dielectric and magnetic properties of materials. Electromagnetics of circuits. Prerequisites: PHYS 2A–C or 4A–C and ECE 45.

ECE 108. Digital Circuits (4)

A transistor-level view of digital integrated circuits. CMOS combinational logic, ratioed logic, noise margins, rise and fall delays, power dissipation, transmission gates. Short channel MOS model, effects on scaling. Sequential circuits, memory and array logic circuits. Three hours of lecture, one hour of discussion, three hours of laboratory. Prerequisites: ECE 25 or CSE 140, 45, and 65 and ECE 30 or CSE 30.

ECE 109. Engineering Probability and Statistics (4)

Axioms of probability, conditional probability, theorem of total probability, random variables, densities, expected values, characteristic functions, transformation of random variables, central limit theorem. Random number generation, engineering reliability, elements of estimation, random sampling, sampling distributions, tests for hypothesis. Students who completed MAE 108, MATH 180A–B, MATH 183, MATH 186, ECON 120A, or ECON 120AH will not receive credit for ECE 109. Prerequisites: MATH 20A-B, MATH 20D, MATH 20C or MATH 31BH, and MATH 31AH or MATH 18. Students who completed MAE 108, MATH 180A-B, MATH 183, MATH 186, or ECON 120A will not receive credit for ECE 109.

ECE 111. Advanced Digital Design Project (4)

Advanced topics in digital circuits and systems. Use of computers and design automation tools. Hazard elimination, synchronous/asynchronous FSM synthesis, synchronization and arbitration, pipelining and timing issues. Problem sets and design exercises. A large-scale design project. Simulation and/or rapid prototyping. Prerequisites: ECE 25 or CSE 140.

ECE 115. Fast Prototyping (4)

Lab-based course. Students will learn how to prototype a mechatronic solution. Topics include: cheap/accessible materials and parts; suppliers; fast prototyping techniques; useful electronic sketches and system integration shortcuts. Students will learn to materialize their electromechanical ideas and make design decisions to minimize cost, improve functionality/robustness. Labs will culminate toward a fully functional robot prototype for demonstration. Prerequisites: ECE 16 or consent of instructor.

ECE 118. Computer Interfacing (4)

Interfacing computers and embedded controllers to the real world: busses, interrupts, DMA, memory mapping, concurrency, digital I/O, standards for serial and parallel communications, A/D, D/A, sensors, signal conditioning, video, and closed loop control. Students design and construct an interfacing project. (Course materials and/or program fees may apply.) Prerequisites: ECE 30 or CSE 30 and ECE 35, 45, 65.

ECE 120. Solar System Physics (4)

General introduction to planetary bodies, the overall structure of the solar system, and space plasma physics. Course emphasis will be on the solar atmosphere, how the solar wind is produced, and its interaction with both magnetized and unmagnetized planets (and comets). Prerequisites: PHYS 2A–C or 4A–D, MATH 20A–B, 20C with grades of C– or better.

ECE 121A. Power Systems Analysis and Fundamentals (4)

This course introduces concepts of large-scale power system analysis: electric power generation, distribution, steady-state analysis and economic operation. It provides the fundamentals for advanced courses and engineering practice on electric power systems, smart grid, and electricity economics. The course requires implementing some of the computational techniques in simulation software. Prerequisites: ECE 35.

ECE 121B. Energy Conversion (4)

Principles of electro-mechanical energy conversion, balanced three-phase systems, fundamental concepts of magnetic circuits, single-phase transformers, and the steady-state performance of DC and induction machines. Students may not receive credit for both ECE 121B and ECE 121. Prerequisites: ECE 121A.

ECE 123. Antenna Systems Engineering (4)

The electromagnetic and systems engineering of radio antennas for terrestrial wireless and satellite communications. Antenna impedance, beam pattern, gain, and polarization. Dipoles, monopoles, paraboloids, phased arrays. Power and noise budgets for communication links. Atmospheric propagation and multipath. Prerequisites: ECE 107 with a grade of C– or better.

ECE 124. Motor Drives (4)

Topics include the operation of DC motor and induction machine drives in steady state and speed control of DC and induction motor drives in an energy efficient manner using power electronics. Control techniques such as vector control and direct torque control (DTC) of induction machines. Different control methods for direct current motors using different types of power converters, such as DC-DC and AC-DC converters. Design torque, speed, and position controller of DC motor drive. Prerequisites: ECE 121B and ECE 125A.

ECE 125A. Introduction to Power Electronics I (4)

Power generation, system, and electronics. Topics include power semiconductor devices and characteristics, single-phase and three-phase half and full controlled AC-to-DC rectifiers, nonisolated/isolated DC-DC converters, power loss calculation, and thermal considerations, Snubber circuits. Prerequisites: ECE 121A.

ECE 125B. Introduction to Power Electronics II (4)

Design and control of DC-DC converters, PWM rectifiers, single-phase and three-phase inverters, power management, and power electronics applications in renewable energy systems, motion control, and lighting. Prerequisites: ECE 125A.

ECE 128A. Real World Power Grid Operation (4)

Provides practical insights into the operation of the power grid. Covers the same subjects that actual power system operators’ certification course covers. It systematically describes the vital grid operators’ functions and the processes required to operate the system. Uses actual case histories, and real examples of best in-class approaches from across the nation and the globe. Presents the problems encountered by operators and the enabling solutions to remedy them. Prerequisites: upper-division standing.

ECE 128B. Power Grid Modernization (4)

In-depth coverage of the future power grids. Covers the practical aspects of the technologies, their design and system implementation. Topics include the changing nature of the grid with renewable resources, smart meters, synchrophasors (PMU), microgrids, distributed energy resources, and the associated information and communications infrastructures. Presents actual examples and best practices. Students will be provided with various tools. Prerequisites: ECE 35 and ECE 128A.

ECE 128C. Power Grid Resiliency to Adverse Effects (4)

This course offers unique insight and practical answers through examples, of how power systems can be affected by weather and what/how countermeasures can be applied to mitigate them to make the system more resilient. Detailed explanations of the impacts of extreme weather and applicable industry standards and initiatives. Proven practices for successful restoration of the power grid, increased system resiliency, and ride-through after extreme weather providing real examples from around the globe. Prerequisites: ECE 128B.

ECE 134. Electronic Materials Science of Integrated Circuits (4)

Electronic materials science with emphasis on topics pertinent to microelectronics and VLSI technology. Concept of the course is to use components in integrated circuits to discuss structure, thermodynamics, reaction kinetics, and electrical properties of materials. Prerequisites: PHYS 2C–D with grades of C– or better.

ECE 135A. Semiconductor Physics (4)

Crystal structure and quantum theory of solids; electronic band structure; review of carrier statistics, drift and diffusion, p-n junctions; nonequilibrium carriers, imrefs, traps, recombination, etc; metal-semiconductor junctions and heterojunctions. Prerequisites: ECE 103 with a grade of C– or better.

ECE 135B. Electronic Devices (4)

Structure and operation of bipolar junction transistors, junction field-effect transistors, metal-oxide-semiconductor diodes and transistors. Analysis of dc and ac characteristics. Charge control model of dynamic behavior. Prerequisites: ECE 135A with a grade of C– or better.

ECE 136L. Microelectronics Laboratory (4)

Laboratory fabrication of diodes and field-effect transistors covering photolithography, oxidation, diffusion, thin film deposition, etching and evaluation of devices. (Course materials and/or program fees may apply.) Prerequisites: ECE 135B.

ECE 138L. Microstructuring Processing Technology Laboratory (4)

A laboratory course covering the concept and practice of microstructuring science and technology in fabricating devices relevant to sensors, lab-chips and related devices. (Course materials and/or program fees may apply.) Prerequisites: upper-division standing for science and engineering students.

ECE 140A. The Art of Product Engineering I (4)

Building on a solid foundation of electrical and computer engineer skills, this course strives to broaden student skills in software, full-stack engineering, and concrete understanding of methods related to the realistic development of a commercial product. Students will research, design, and develop an IOT device to serve an emerging market. Prerequisites: CSE 8B or CSE 11 or ECE 15.

ECE 140B. The Art of Product Engineering II (4)

Building on a solid foundation of electrical and computer engineer skills, this course strives to broaden student skills in software, full-stack engineering, and concrete understanding of methods related to the realistic development of a commercial product. Students will research, design, and develop an IOT device to serve an emerging market. Prerequisites: ECE 140A.

ECE 141A. Software Foundations I (4)

.

Software analysis, design, and development. Data structures, algorithms, and design and development idioms in C++ of the breadth courses and one depth course.

ECE 193H....

Electrical and Computer Engineering - undergraduate program

higher than £ 9000