Electronic, optical and magnetic properties of materials

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Materials

Course programme

Lectures: 3 sessions / week, 1 hour / session


Recitations: 2 sessions / week, 1 hour / session


Labs: 3 weeks, 5 sessions / week, 1 hour / session


3.012 Fundamentals of Materials Science and Engineering


This course offers a description of how the electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications, for instance in optical fibers, magnetic data storage, solar cells, transistors and other devices. It also offers experimental exploration of the electronic, optical and magnetic properties of materials, including hands-on experimentation using spectroscopy, resistivity, impedance and magnetometry measurements, behavior of light in waveguides, and other characterization methods, as well as investigation of structure-property relationships through practical materials examples.


There is an emphasis in lectures on fundamental physical models in order to understand and predict electrical, optical and magnetic properties using real world examples and applications, as well as EOM property measurements using state-of-the-art tools and engineering materials properties during lab sessions.


Introduction and course overview


The Hamiltonian approach to classical mechanics: Analysis of a simple oscillator


PSet 1 due


PSet 2 out


PSet 2 due


PSet 3 out


Lab report 1 due


PSet 3 due


PSet 4 out


PSet 4 due


PSet 5 out


PSet 5 due


PSet 6 out


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Electronic, optical and magnetic properties of materials

Price on request