Engineering Mathematics - Numerical Analysis

Course

Online

£ 13 + VAT

Description

  • Type

    Course

  • Methodology

    Online

  • Start date

    Different dates available

This course is focused upon engineering mathematics. After completing the tutorial, you will be able to understand the basic advantageous knowledge of numerical analysis techniques. Certain bonus lectures are also included.This course is specifically designed for engineering students who suffers a lot of problems while dealing with numerical analysis. HAPPY LEARNING !!

Facilities

Location

Start date

Online

Start date

Different dates availableEnrolment now open

About this course

Good grasp over numerical analysis portion of engineering mathematics
Newton Raphson method, Secant method, Bisection method, Trapezoidal & simpson's rule

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

This centre's achievements

2021

All courses are up to date

The average rating is higher than 3.7

More than 50 reviews in the last 12 months

This centre has featured on Emagister for 4 years

Subjects

  • GCSE Mathematics
  • Engineering
  • Engineering Mathematics
  • Mathematics
  • Works

Course programme

Introduction & best practices 4 lectures 46:28 Newton Raphson Method In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Secant Method In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. Bisection Method The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. Trapezoidal & Simpson's 1/3 rule In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. Introduction & best practices. 4 lectures 46:28 Newton Raphson Method In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Secant Method In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. Bisection Method The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. Trapezoidal & Simpson's 1/3 rule In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. Newton Raphson Method In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Newton Raphson Method In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Newton Raphson Method In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Newton Raphson Method In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. In numerical analysis, Newton's method (also known as the NewtonRaphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Secant Method In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. Secant Method In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. Secant Method In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. Secant Method In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method. Bisection Method The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. Bisection Method The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. Bisection Method The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. Bisection Method The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. The bisection method in mathematics is a root-finding methodthat repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. .... The method is also called the interval halving method, the binary searchmethod, or the dichotomy method. Trapezoidal & Simpson's 1/3 rule In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. Trapezoidal & Simpson's 1/3 rule In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. Trapezoidal & Simpson's 1/3 rule In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. Trapezoidal & Simpson's 1/3 rule In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule. The trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial over interval of integration. In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) is a technique for approximating the definite integral. . The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. Use multiple-segment Simpson's 1/3 rule of integration to solve integrals, and derive the true error formula for multiple-segment Simpson's 1/3 rule

Additional information

Basic engineering knowledge & Mathematics as one of the subjects in academics Basics of Integration & Differentiation

Engineering Mathematics - Numerical Analysis

£ 13 + VAT