Course not currently available

Extreme learning to handle big data

PhD

In Bedfordshire ()

Price on request

Description

  • Type

    PhD

As aerospace platforms go through their service life, gradual performance degradations and unwarranted system failures can occur. There is certain physical information known a priori in such aerospace platform operations. The main research hypothesis to be tested in this research is that it should be possible to significantly improve the performance of extreme learning and assure safe and reliable maintenance operation by integrating this prior knowledge into the learning mechanism. The integrating should enable to guarantee certain properties of the learned functions, while keep leveraging the strength of the data-driven modelling. Most of, if not all, the traditional statistical methods are not suitable for big data due to their certain characteristics: heterogeneity, statistical biases, noise accumulations, spurious correlation, and incidental endogeneity.  Therefore, big data demands new statistical thinking and methods. As data size increases, each feature and parameter also becomes highly correlated. Then, their relations get highly complicated too and hidden patterns of big data might not be possible to be captured by traditional modelling approaches. This implies that mathematical modelling of such data is infeasible. The data-driven modelling approach could resolve this issue and we could use obtain data-driven models using machine learning algorithms such as artificial neural networks, reinforcement learning, and deep learning.  A typical caveat of data-driven modelling using learning algorithms as Extreme Learning Machine (ELM) is that training data should cover the entire domain of process parameters to achieve accurate generalization of the trained model to new process configurations. In practice, this might not be possible, that is the sample data could cover only some space, not entire space, of process parameters. Integrating prior knowledge into the learning could enable accurate generalization of the...

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Algorithms

Course programme

Supervisor


Entry requirements For this research studentship, we are seeking a talented graduate, having (or be expected to obtain) at least an upper second class honours degree (first class honours preferred), MSc or equivalent in Mechanical, Electrical Engineering, Control Engineering, Aerospace or Computer Science. Good mathematical background and experience with Matlab/Simulink, C++ and real time implementations and programming would be most desirable.

Extreme learning to handle big data

Price on request