Host hacking: parasitic manipulations from a micro- to a macroscopic scale

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

Parasites require a hospitable organism to reproduce and spread and have evolved multiple strategies to subvert their hosts. Parasites scavenge nutrients directly from host cells, evade the host immune system and even modify host behavior to increase their transmission. This course will explore the strategies used by a ubiquitous and harmful class of parasites to hijack the biology of their host cells. We will discuss pathogens such as Plasmodium and Toxoplasma, responsible for some of the deadliest and most pervasive infectious diseases on the planet.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Cell Biology
  • Biochemistry
  • Biology
  • Hacking
  • Infection

Course programme

Lectures: 1 session / week, 2 hours / session


There are no absolute prerequisites, but some knowledge of genetics, biochemistry and cell biology is expected. Ideally, candidates have successfully taken at least one of the following classes:


7.03 Genetics


7.05 General Biochemistry


7.06 Cell Biology


7.28 Molecular Biology


Parasites require a hospitable organism to reproduce and spread and have evolved multiple strategies to subvert their hosts. Parasites scavenge nutrients directly from host cells, evade the host immune system and even modify host behavior to increase their transmission. This course will explore the strategies used by a ubiquitous and harmful class of parasites to hijack the biology of their host cells. We will discuss pathogens such as Plasmodium and Toxoplasma, responsible for some of the deadliest and most ubiquitous infectious diseases on the planet.


Malaria is caused by several Plasmodium species and causes more than half a million deaths a year, mostly of children under five. After being transmitted through a mosquito bite, Plasmodium invades the liver and red blood cells. One of the most important manifestations of malaria is the modification of red blood cells by the parasite, causing them to stick to the walls of small blood vessels. Vessel blockage in the brain causes cerebral malaria, the most fatal form of the disease. As a pathogen of humans for the past 100,000 years, Plasmodium has evolved elegant strategies to survive and ensure its transmission, for example by hiding from the human immune system; it has been suggested that Plasmodium alters the behavior of infected mosquitos by making them more likely to seek hosts and to feed more often, thereby increasing the transmission of the parasite.


Toxoplasma gondii might be the world's most successful pathogen, infecting up to half the human population. Although its sexual cycle only takes place within cats, Toxoplasma is able to survive within almost all warm-blooded animals. In humans, Toxoplasma gondii causes a chronic and asymptomatic infection in immuno-competent subjects. However, in immuno-compromised patients, Toxoplasma can cause fatal brain inflammation. Toxoplasma infection of otherwise healthy pregnant women can cause miscarriage, and Toxoplasma variants are a leading cause of eye disease in otherwise healthy people in South America. Intriguingly, chronic Toxoplasma infection has been linked to interesting behavioral alterations; for example, infected mice lose their fear of cats, increasing their chance of being eaten and so completing the parasite's life cycle. In humans, Toxoplasma infection has been linked to risk-taking behavior and might be involved in schizophrenia.


By exploring how these pathogens invade a host cell and replicate while evading the immune system, students will gain a broad understanding of basic cell biology, biochemistry and immunology, as well as learn techniques commonly used in cell biology. A major goal of the course is to teach students to critically analyze the primary research literature. Students will be challenged to think creatively and flexibly to understand, critique, interpret, and design scientific experiments in the field of host-pathogen interactions. This course will include a field trip to an academic laboratory focused on host-pathogen interactions, where students will learn about the use of several cutting-edge techniques for the study of the biology of Toxoplasma and the impact that these tools are having on the field of molecular parasitology.


During each class, two scientific manuscripts will be assigned as required reading for the next class. Students should analyze the papers in preparation for each class and use the following guiding questions which will provide the basis for discussion during each session:


The major aim of the course is to help students develop a strong ability to critically read and discuss a research paper. The class sessions will focus on discussing the results and the methods used to respond to the questions the authors wanted to address. We will critically analyze the articles using the guiding questions listed above. The final 10–15 minutes will be dedicated to the following week's topic. One or both instructors will provide an introduction to the problem and methods to be addressed by the next session's papers and offer some background about the state of the field at the time the paper was published.


This course will be graded Pass / Fail. To pass this course, students are expected to:



Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Host hacking: parasitic manipulations from a micro- to a macroscopic scale

Price on request