Human factors engineering

Master

In Maynard (USA)

Price on request

Description

  • Type

    Master

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a research-oriented project with a final written report and an oral presentation.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Aviation Training
  • Aviation
  • Engineering
  • Systems
  • Project
  • Design
  • Primary
  • Presentation
  • Ergonomics

Course programme

Lectures: 2 sessions / week, 1.5 hours / session


This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a research-oriented project with a final written report and an oral presentation.


Given a complex aviation or space system which requires human interaction, students will be proficient in identifying sensory, motor, and cognitive concerns for expected operational envelopes, developing hypotheses for design recommendations to improve human interaction in these complex systems, generating basic experimental plans which lead to testing those hypotheses through statistical models, and effectively communicating these results through interpretation and presentation of results.


By the end of the course, students will be able to:


Proctor, R. W., and T. Van Zandt. Human Factors in Simple and Complex Systems. 2nd ed. CRC Press, 2008. ISBN: 9780805841190. [Preview with Google Books]


Dismukes, R. K., B. A. Berman, and L. D. Loukopoulous. The Limits of Expertise: Rethinking Pilot Error and the Causes of Airline Accidents. Ashgate Publishing, 2007. ISBN: 9780754649656. [Preview with Google Books]


Bluman, A. G. Elementary Statistics: A Step-by-Step Approach. 5th ed. McGraw-Hill, 2004. ISBN: 9780072549072.


Grading differs for undergraduate and graduate students in the course.


It is expected that within this course, the highest standards of academic integrity will be maintained, in keeping with MIT's stated policy: "Fundamental to the principle of independent learning and professional growth is the requirement of honesty and integrity in conduct of one's academic and nonacademic life…. Cheating, plagiarism, unauthorized collaboration, and other forms of academic dishonesty are considered serious offenses for which disciplinary penalties can be imposed." Specifically in this class, collaboration is allowed for the projects but quizzes and p-sets are individual efforts. All referenced work should be appropriately cited (APA format), to include websites, as well as figures and graphs in presentations. If there are any questions whatsoever, feel free to contact the course instructors about any possible gray areas.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Human factors engineering

Price on request