Integrated chemical engineering i

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course uses reaction kinetics, batch reactor analysis, batch distillation, batch operations scheduling, safety analysis, and the ABACUSS process simulator to introduce process design and analysis techniques.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Ms Office
  • Engineering
  • Project
  • Design
  • Chemical Engineering
  • Office IT

Course programme

A Calendar showing lectures, recitations, and office hours is listed below.


Lectures: 4 sessions / week, 1 hour / session


We want you to learn about:


We plan to show you:


This course introduces chemical process design. The homework assignments familiarize students with ABACUSS simulations, batch processes, and separation systems. Students then develop a base case scenario as a first solution to the design problem. Students evaluate the economic feasibility of the base case solution. Through discussions with the instructors and TAs, students refine their model parameters to arrive at an optimized solution. Lastly, students communicate their solution by writing a report.


The prerequisites for this course include 10.37, 10.32, 10.301, 10.213 and 5.60.


There is no formal restriction on which section you attend. The class will have three types of meeting: regular lectures, recitation sessions, and instructor office hours. Regular lectures will be held on campus and are indicated on the course schedule. Recitation sessions will also be held in the same room. No formal lecture material will be taught in recitation sessions; instead, students will be expected to bring questions and participate in a discussion of their design projects. Instructor office hour sessions will be held in the instructor's office. During these periods, the instructor's office will be open to any students with questions concerning their design projects.


King, C. J. Separation Processes. 2nd ed. New York, NY: McGraw-Hill, 1980. ISBN: 9780070346123.


Smith, J. M., H. C. Van Ness, and M. M. Abbott. Introduction to Chemical Engineering Thermodynamics. 7th ed. Boston, MA: McGraw-Hill, 2004. ISBN: 9780073104454.


Fogler, H. S. Elements of Chemical Reaction Engineering. 4th ed. Upper Saddle River, NJ: Prentice Hall PTR, 2005. ISBN: 9780130473943.


We learn better if we examine the input as we receive it. At the end of each class, please submit the fix-it form. The fix-it asks (1) What was the most important thing you learned? (2) What topic or point was least clear? Of course additional comments, questions, and requests are welcome, as well. If you use fix-its earnestly, you will benefit.


Homework assignments should be completed individually, while all report assignments should be submitted as group contributions. Draft sections of the final report will be graded for style and technical content and will count towards the final report grade. It is course policy that students should not refer to either homework or final project solutions from earlier years. If it is discovered that reference has been made to earlier years, the students involved will receive no credit for the assignment in question. Note that we change the underlying models in ABACUSS from year to year, so the results generated by this software change.


Assigned work is due at the beginning of class on the dates given in the schedule. Extensions cost 10 percent for each 24 hours beyond the deadline, up to a maximum of 30 percent. Medical and beyond-your-control problems will be dealt with individually. Plant trips and other scheduled activities are not beyond your control - allocate your time to meet all your obligations.


ABACUSS II is an equation-based process simulator that has been developed at MIT. ABACUSS II can solve dynamic as well as steady-state problems. For example, it can model charging a batch reactor, reactions in a batch reactor, shutting valves, phase transitions, as well as continuous plant operation. ABACUSS II is not available from this site.


The calendar below provides information on the course's lecture (L), recitations (R), and office hours (OH) sessions.


Course Goals and Requirements


Introduction to Batch Processing


Lucretex Project


Project Team Assignments


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Integrated chemical engineering i

Price on request