Introduction to electrical engineering and computer science i

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course provides an integrated introduction to electrical engineering and computer science, taught using substantial laboratory experiments with mobile robots. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering and computer science.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Engineering
  • Systems
  • Materials
  • Electrical
  • Design
  • Primary

Course programme


« Previous | Next »


We have many goals for this course. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering and computer science.


Our second goal is to show you that making mathematical models of real systems can help in the design and analysis of those systems, and to give you practice with the difficult step of deciding which aspects of the real world are important to the problem being solved and how to model them in ways that give insight into the problem.


Finally, of course, we have the more typical goals of teaching exciting and important basic material from electrical engineering and computer science, including modern software engineering, linear systems analysis, electronic circuits, and decision-making. This material all has an internal elegance and beauty, as well as a crucial role in building modern EE and CS systems.


At MIT, 6.01 has no formal prerequisites. Students are expected to take 8.02 Physics II: Electricity and Magnetism as a co-requisite.


This OCW Scholar course will be most useful to students with the following background and skills:


6.01 meets at MIT based on the following schedule:


Lectures: 1 session / week, 1.5 hours / session


Software Lab: 1 session / week, 1.5 hours / session


Design Lab: 1 session / week, 3 hours / session


Outside of class time, students are expected to do the assigned readings, prepare for software and design labs, and complete homework assignments and other exercises.


A short nano-quiz is given during most design lab sessions. The purpose of these nano-quizzes is to provide motivation and feedback for learning the materials presented in the lectures, readings, and additional exercises. Nano-quizzes will generally consist of a simple question from the current week's material and a more difficult question from previous weeks. Assessment also includes two midterms and a final exam.


6.01 students at MIT complete many of the assignments in an online tutorial environment which checks whether their answers are correct. This environment (often referred to as the Online Tutor in labs and other assignments) is not available as part of 6.01SC on MIT OpenCourseWare. The problems are provided as PDFs on each session page, but solutions are not available.


In this site, each session page generally corresponds to a week in the MIT course. The lectures were recorded in Spring 2011, while most of the activities (software and design labs, additional exercises, and homework assignments) are taken from the Fall 2011 course.


For MIT students, grades are calculated as follows:


The 6.01 course notes are presented by chapter in the pages that follow. Here is the complete set of notes as one file:


The development of these notes was led by Leslie Kaelbling. Jacob White, Hal Abelson, Tomas Lozano-Perez, Sarah Finney, Sari Canelake, Eric Grimson, Ike Chuang, and Berthold Horn provided useful comments and criticisms, and Dennis Freeman developed significant parts and most of the figures in the Signals and Systems chapter.



« Previous | Next »


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Introduction to electrical engineering and computer science i

Price on request