Introduction to modeling and simulation

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This subject provides an introduction to modeling and simulation, covering continuum methods, atomistic and molecular simulation, and quantum mechanics. Hands-on training is provided in the fundamentals and applications of these methods to key engineering problems. The lectures provide exposure to areas of application based on the scientific exploitation of the power of computation. We use web based applets for simulations, thus extensive programming skills are not required.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Team Training
  • Engineering
  • Materials
  • Simulation
  • Mechanics

Course programme

Lectures: 2 sessions / week, 1.5 hours / session


Recitations: 1 session / week, 1 hour / session


18.03 Differential Equations or 3.016 Mathematical Methods for Materials Scientists and Engineers.


Introduction to Modeling and Simulation (IM/S) provides an introduction into modeling and simulation approaches, covering continuum methods (e.g. finite element analysis), atomistic simulation (e.g. molecular dynamics) as well as quantum mechanics. Atomistic and molecular simulation methods are new tools that allow one to predict functional material properties such as Young's modulus, strength, thermal properties, color, and others directly from the chemical makeup of the material by solving Schroedinger's equation (quantum mechanics). This approach is an exciting new paradigm that allows to design materials and structures from the bottom up — to make materials greener, lighter, stronger, more energy efficient, less expensive; and to produce them from abundant building blocks. These tools play an increasingly important role in modern engineering! In this subject you will get hands-on training in both the fundamentals and applications of these exciting new methods to key engineering problems.


The subject will be taught by two instructors, each covering approximately one half of the subject. Part I will be taught by Prof. Markus Buehler covering continuum and particle methods, and Part II on quantum mechanics will be taught by Prof. Jeff Grossman. The two parts will be based on one another and are integrated.


Recitations will illustrate and/or expand concepts presented in lectures by working through numerical example problems, or by showing how to use the simulation codes. Material covered in recitations is often related to the problem sets and is considered part of the subject content, so regular attendance is advisable.


We will assign a total of approximately 6 problem sets, focused on simulation work and data analysis. Each problem set is designed to build upon the material covered in the preceding lectures and recitations. The homework assignments will be prepared by teams consisting of three students. In this case, each team will hand in one solution, with the names of team members who contributed as indicated on the cover page. The problem sets worked out by a team of students typically cover more complex problem that require numerical simulation.


Due dates for problem sets are firm and homework assignments will be corrected and handed back (with solutions) no later than two lectures after the due date. You may use any material to complete the solution. However, it is important that you properly reference the material used (e.g. books, website, journal articles).


There will be one in-class 1.5 hour midterm exam and a final exam during finals week. All exams are open-book, but bear in mind to develop an appropriate exam strategy. The exams typically cover theoretical material and important concepts related to the two parts, respectively.


The final grade will be based on: Homework (50%) and in-class exams (50%). Additional projects can be used to improve your overall score.


HW 4 due


HW 5 out


HW 5 due


HW 6 out


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Introduction to modeling and simulation

Price on request