Introduction to numerical methods

Master

In Maynard (USA)

Price on request

Description

  • Type

    Master

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Mathematics
  • Systems
  • Algebra
  • Mathematics
  • Algorithms
  • PA

Course programme

Lectures: 3 sessions / week, 1 hour / session


18.06 Linear Algebra, 18.700 Linear Algebra and 18.03 Differential Equations or 18.034 Honors Differential Equations.


Advanced introduction to numerical linear algebra and related numerical methods. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating-point standard, sparse and structured matrices, and linear algebra software. Other topics may include memory hierarchies and the impact of caches on algorithms, nonlinear optimization, numerical integration, FFTs, and sensitivity analysis. Problem sets will involve use of MATLAB® (little or no prior experience required; you will learn as you go).


Bau III, David, and Lloyd N. Trefethen. Numerical Linear Algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997. ISBN: 9780898713619.


Additional readings include:


Bai, et al. Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2000. ISBN: 9780898714715.


Barrett, et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1993. ISBN: 9780898713282.


Talk to anyone you want to and read anything you want to, with three exceptions: First, you may not refer to homework solutions from the previous terms. Second, make a solid effort to solve a problem on your own before discussing it with classmates or doing an Internet search. Third, no matter whom you talk to or what you read, write up the solution on your own, without having their answer in front of you.


The final project will be a 5–15 page paper (single-column, single-spaced, ideally using the style template from the SIAM Journal on Numerical Analysis), reviewing some interesting numerical algorithm not covered in the course. [Since this is not a numerical PDE course, the algorithm should not be an algorithm for turning PDEs into finite/discretized systems; however, your project may take a PDE discretization as a given "black box" and look at some other aspect of the problem, e.g. iterative solvers.]


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Introduction to numerical methods

Price on request