Modeling environmental complexity

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course provides an introduction to the study of environmental phenomena that exhibit both organized structure and wide variability—i.e., complexity. Through focused study of a variety of physical, biological, and chemical problems in conjunction with theoretical models, we learn a series of lessons with wide applicability to understanding the structure and organization of the natural world. Students also learn how to construct minimal mathematical, physical, and computational models that provide informative answers to precise questions.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Course programme

Lectures: 2 sessions / week, 1.5 hours / session


Students should have completed 18.03SC Differential Equations or its equivalent and have some familiarity with partial differential equations.


This course provides an introduction to the study of environmental phenomena that exhibit both organized structure and wide variability—i.e., complexity. Emphasis is on the development of quantitative theoretical models, with special attention given to macroscopic continuum or statistical descriptions of microscopic dynamics. Concepts and problems include the microdynamics and macrodynamics of random walks and fluid flow; extreme deviations and anomalous diffusion; geological and ecological networks; percolation theory; dynamical origin of fractals and scale invariance; the origin and complex kinetics of biogeochemical cycles.


Through focused study of a variety of physical, biological, and chemical problems in conjunction with theoretical models, students learn a series of lessons with wide applicability to understanding the structure and organization of the natural world. Such lessons include: How complexity can derive from simple dynamics; why fractals are ubiquitous in the natural world; and generic consequences of complex biogeochemical kinetics. Students will also acquire specific skills, including: The statistical analysis of data with wide variability; how to use computer simulations to reveal fundamental phenomena; and how to construct a minimal model of a complex system that provides informative answers to precise questions. A unifying theme is the relation of macroscopic complexity to microscopic dynamics.


There are 3 project-oriented problem sets. A final, independent project on a topic of the student's choice is due at the end of the term, including a written report and an oral presentation. There is no exam.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Modeling environmental complexity

Price on request