Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Physics
  • Engineering
  • Systems
  • Communications
  • Signal processing

Course programme

Lectures: 2 sessions / week, 1 hour / session


Recitations: 2 sessions / week, 1 hour / session


6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.


6.02 Introduction to EECS II


Oppenheim, Alan, and Alan Willsky. Signals and Systems. 2nd ed. Prentice Hall, 1996. ISBN: 9780138147570.


Your grade in 6.003 will be the weighted average of the following component grades:


We encourage students to discuss assignments in this subject with other students and with the teaching staff to better understand the concepts. However, when you submit an assignment under your name, we assume that you are certifying that the details are entirely your own work and that you played at least a substantial role in the conception stage.


You should not use results from other students (from this year or from previous years) in preparing your solutions. You should not take credit for computer code or graphics that were generated by other students. Students should never share their solutions with other students.


Any student caught plagiarizing will receive a grade of zero on the assignment. All incidents of plagiarism will be reported to the Committee on Discipline (COD). More information about what constitutes plagiarism can be found at the MIT Academic Integrity site.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Signals and systems

Price on request