Aerospace Engineering MSc

5.0
2 reviews
  • I am enjoying it, lectures are great and helpful. Their career departments are very engaging. Universit is great and helpful. It was a nice experience.
    |
  • Great place campus is also beautiful with lots of communities. Academically I found it good and great for sports facilities and many clubs and socities were above average. Social activities are great here.
    |

Postgraduate

In Uxbridge

Price on request

Description

  • Type

    Postgraduate

  • Location

    Uxbridge

  • Start date

    Different dates available

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Facilities

Location

Start date

Uxbridge (Middlesex)
Brunel University, UB8 3PH

Start date

Different dates availableEnrolment now open

About this course

IELTS: 6 (min 5.5 in all areas)
Pearson: 51 (51 in all subscores)
BrunELT: 60% (min 55% in all areas)

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

5.0
  • I am enjoying it, lectures are great and helpful. Their career departments are very engaging. Universit is great and helpful. It was a nice experience.
    |
  • Great place campus is also beautiful with lots of communities. Academically I found it good and great for sports facilities and many clubs and socities were above average. Social activities are great here.
    |
100%
4.6
excellent

Course rating

Recommended

Centre rating

Andaleeb

5.0
10/06/2018
What I would highlight: I am enjoying it, lectures are great and helpful. Their career departments are very engaging. Universit is great and helpful. It was a nice experience.
What could be improved: Nothing to say
Would you recommend this course?: Yes

Student Reviewer

5.0
15/01/2018
What I would highlight: Great place campus is also beautiful with lots of communities. Academically I found it good and great for sports facilities and many clubs and socities were above average. Social activities are great here.
What could be improved: It was great.
Would you recommend this course?: Yes
*All reviews collected by Emagister & iAgora have been verified

This centre's achievements

2018

All courses are up to date

The average rating is higher than 3.7

More than 50 reviews in the last 12 months

This centre has featured on Emagister for 14 years

Subjects

  • Aerospace Engineering
  • On-Air
  • Financial Training
  • Engineering
  • Industry
  • Systems
  • Project
  • Financial
  • Marketing
  • Design

Course programme

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles

  • Part A – Aerospace Vehicles
    Introduction to spacecraft design: types, roles, systems, operating environment; Introduction to helicopter design: configurations, roles, design problems, operating environment, sizing and performance estimation; other aerospace vehicles: UAVs, MAVs, GEVs, spaceplanes, microlights, parachutes.
  • Part B – Aircraft design and systems analysis
    Fixed-wing aircraft conceptual design, parametric studies, preliminary design, detailed design. Airframe structure, aerodynamics, propulsion, use of materials, and mission requirements. Aircraft cost, aircraft reliability and maintainability predictions. Use of aircraft design data and design formulae. Application of specialist performance analysis software to the conceptual aircraft design process.

Advanced Aerodynamics, Propulsion Systems, and Space Mechanics

Incompressible flow over airfoil and finite wings: Classical airfoil theory, vortex panel numerical method, Biot-Savart law, Helmholtz's theorem, Prantdl's classical lifting-line theory, lifting-surface theory, vortex lattice numerical method, the delta wing. Compressible flow: flow about bodies and shock formation, compressible flow relations, flow through nozzles, shock interactions and reflections, hypersonic flows.

Application of numerical codes: CFD, Euler solvers. Spacecraft trajectories. Multistage rockets. Escape velocity. Elliptical and circular orbits. Orbital manoeuvres. Atmospheric re-entry and atmospheric heating. Axial aircraft compressors. Radial equilibrium theory for axial machines. Axial aircraft turbines. Aircraft combustion chamber design. Ramjet.

Current Topics in Aerospace

Airport design, air traffic control and management; aircraft and airport security; safety measures in aircraft; environmental pollution and noise; history and statistics of air accidents; passenger and luggage handling; catering services; role of flight simulators; future for aerospace industry and air traffic growth.

Strategic Management Innovation and Enterprise

  • Financial ownership issues: financial implications, sources of finance, raising capital, venture finance, merchant banks, mergers, take-overs, business restructuring.
  • Human resources management: key theories of motivation in workplace, leadership, incentivisation, managing a unionised workforce, employment legislation in UK, EU and worldwide. Organisation of a business: organisation theory, organisational strategy and culture, integration of functions, forces for change and continuous improvement.
  • Marketing concept: Customer orientation; market segmentation and analysis
  • Ethical business: Moral codes; legal frameworks; industry regulations; local and global trade. Marketing Communications: market research, marketing mix, branding, advertising and sponsorship.

Research Methods and Sustainable Engineering

  • Practical research issues: research processes and strategies; researcher/supervisor roles and relationships; writing, communicating and disseminating research; principles of good research practice.
  • Information retrieval: objectives; sampling methods; data analysis; when and how to apply statistics; statistical methods; preparing and sorting data; parametric and non-parametric tests; computer software for statistical analysis.
  • Risk management: Risk analysis and decision support, financial indicators
  • Innovation: Brainstorming, value engineering, intellectual property protection.

Group Project in Aerospace Engineering

Students work nominally in groups of five or six to prepare a novel design for a particular engineering system or product. They will be required to work from an initial design brief to produce the product design specification and the necessary planning and management strategies.

  • you will learn and apply techniques and skills to carry out the design of a multidisciplinary or cross-disciplinary system or product.
  • you will be required to produce a final technical specification including cost justification.
  • you will also be expected to provide performance justification, the specification of appropriate manufacturing techniques and provision for accommodating environmental effects.

Aircraft Structures, Loads and Aeroelasticity

Dissertation

Students will work independently on a project within given resources and time constraints. Students often choose project topics from a list provided by the module co-ordinator or after having discussions with academic members of staff.

  • Some projects may be part of the research activities undertaken by various research groups within the College.
  • Some project topics may be initiated by organisations external to Brunel, though supervision from within Brunel is necessary in all cases.
  • The nature of projects may be predominantly design, experimental, computing and/or analysis, or sometimes a critical literature survey. Many projects combine several of these aspects.

Read more about the structure of postgraduate degrees at Brunel and what you will learn on the course.


Additional information

Teaching and Assessment Assessment Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment. For the final four months (June to September), students will conduct an individual project and prepare a dissertation, allowing the opportunity to undertake original research relating to the aerospace engineering field. The group project is conducted throughout the year and is assessed by means of project logbooks, oral presentations and final project reports.

Aerospace Engineering MSc

Price on request