Computational quantum mechanics of molecular and extended systems

Master

In Maynard (USA)

Price on request

Description

  • Type

    Master

  • Location

    Maynard (USA)

  • Start date

    Different dates available

The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Computational
  • Systems
  • Mechanics

Course programme

Lectures: 2 sessions / week, 1.5 hours / session


The course teaches the art of quantum mechanical calculations from both the chemistry and physics point of view. It, thus, falls somewhere between a laboratory course and a lecture course. In a laboratory course, you must learn by doing, and it is more important that you learn how to run the equipment well and how to interpret the data than that you learn how a piece of equipment is constructed and what exactly is under its cover. Similarly, in this course, you will learn how to run various quantum codes correctly and how to interpret the output of the codes, but you will not necessarily need to know how each algorithm in the 100's of 1000's of lines of code works. On the other hand, you will learn the theories behind the computer codes, so that you will be able to interpret the output of the codes. You will also learn about applications of computational quantum mechanical methods, in order to understand their potential and scope. Finally, you will gain insight into the current research and development of these methods to know where the field is going and what to expect in the future.


There are no specific prerequisites, just permission of the instructor. It is expected that students should be able relatively quickly to become comfortable with advanced concepts from mathematics and physics.


Szabo, Attila, and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. New York: McGraw-Hill, Inc., 1989. ISBN: 9780070627390.


There is no suitable textbook for this course. The best one still seems to be Modern Quantum Chemistry by Szabo and Ostlund, which is "required" for the course. Introduction to Quantum Chemistry by Frank Jensen has similar material, but also includes a discussion of density functional theory and has a useful chapter, 12 "Transition State Theory and Statistical Mechanics." It also has helpful descriptions of many of the methods that Gaussian uses. It is "recommended" for the course. Finally, see the References document for other helpful books.


Gaussian03: Used to perform quantum mechanical calculations.


GaussView: GUI, used to create job files, run jobs, and visualize output.


CPMD: Car-Parrinello Molecular Dynamics Web site.


Sun and Linux® machines


NCSA (National Computational Science Alliance): SGI Origin 2000 (796 processors)


There are five problem sets in this course. Each student is required to complete a final project.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Computational quantum mechanics of molecular and extended systems

Price on request