A double-edged sword: cellular immunity in health and disease

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

Immune cells protect our bodies from both self-derived threats and exogenous pathogens, while keeping peace with normal cells and non-harmful commensal microbiota. They have various mechanisms to perform these tasks, a capacity that is essential for maintaining homeostasis. However, these same mechanisms can backfire, resulting in severe disorders such as immunodeficiency, chronic inflammation, allergy, degenerative diseases, and cancer. This course discusses the connections between normal physiology and disease by examining the developmental relationship between innate and adaptive immune cells as well as the functions and malfunctions of immune cells. The course familiarizes students with both basic biological principles (such as cell death and immune cell signaling) and clinical applications (such as immune checkpoint blockade). More generally, students learn to identify relevant primary research literature, critically evaluate experimental data, and reach their own conclusions based on primary data.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Research Literature
  • Physiology
  • Biology
  • Primary
  • Allergy

Course programme

Lectures: 1 session / week, 2 hours / session


No previous immunology courses are required. Basic knowledge of molecular biology, cell biology and biochemistry will be helpful. Students are recommended to have taken at least one of the following courses:


7.03 Genetics


7.06 Cell Biology


7.28 Molecular Biology


Prerequisites may be waived with permission by the instructor.


Immune cells are a diverse group of cells that function as foot soldiers to protect our bodies from both self-derived threats and exogenous pathogens, while keeping peace with normal cells and non-harmful or beneficial commensal microbiota. Immune cells are equipped with a variety of powerful and adaptable mechanisms to detect and subsequently resolve a wide spectrum of insults, a capacity that is essential for maintaining homeostasis under normal physiological conditions. However, the same mechanisms can backfire upon immune evasion of invading pathogens or under physiological stress and instead result in severe disorders, such as immunodeficiency, chronic infection and inflammation, autoimmune diseases, allergy, degenerative diseases, and cancer. Basic and translational research studies of immune cells have led to novel strategies to treat some of these disorders.


In this course, we will discuss the connections between normal physiology (defense against infections, immune surveillance, and homeostasis) and disease (immune deficiency, chronic inflammation, and autoimmunity) by examining primary research papers that range from the classic to the most recent. We will discuss the developmental relationship between innate and adaptive immune cells as well as the functions and malfunctions of both types of immune cells. Our topics will include both basic biological principles (such as inflammatory and non-inflammatory cell death and immune cell signaling) and clinical applications (such as immune checkpoint blockade and chimeric antigen receptor-T or CAR-T cells). This course will familiarize students with basic immunological regulatory mechanisms and examples of strategies that apply knowledge of this fundamental biology to improve human health. More generally, students will learn how to identify relevant primary research literature, critically evaluate experimental data, and reach their own conclusions based on primary data. We will have the opportunity to learn how fundamental knowledge can be translated into a therapeutic treatment by visiting Merck, one of the largest pharmaceutical companies in the world.


The class will meet weekly for two hours at a time convenient for all participants. Each week two primary research papers will be made available for students to read critically and thoroughly prior to class. During class, the students will critique the papers, focusing on two aspects: 1) overall evaluation of the results and impact of the papers; 2) detailed analysis of experimental design, methods utilized, controls, and key data points that allow authors to reach their conclusions. At the end of each session, two papers for the upcoming week will be previewed.


The course will introduce students to the critical reading of the primary scientific literature in the field of cellular immunity. By understanding the background of the papers and critiquing the methods, data, and conclusions in the papers, students will learn to:


This half course (6 credits) is graded pass/fail. As the course is discussion-based, attendance at every class is mandatory and participation is a requirement for a passing grade. Should an emergency occur, please contact the instructor as soon as possible for a make-up assignment.


To complement the papers we read in the course, we will take a field trip to the pharmaceutical company Merck on topics related to cellular immunity (such as immune checkpoint therapies). A lab tour and a career panel discussion will be included in the trip.



Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


A double-edged sword: cellular immunity in health and disease

Price on request