Engineering mechanics i

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This subject provides an introduction to the mechanics of materials and structures. You will be introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of materials and structures and you will learn how to solve a variety of problems of interest to civil and environmental engineers. While there will be a chance for you to put your mathematical skills obtained in 18.01, 18.02, and eventually 18.03 to use in this subject, the emphasis is on the physical understanding of why a material or structure behaves the way it does in the engineering design of materials and structures.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Engineering
  • Materials
  • Mechanics
  • Design

Course programme

Lectures: 3 sessions / week, 1 hour / session


Recitations: 1 session / week, 2 hours / session


This subject provides an introduction to the mechanics of materials and structures. You will be introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of materials and structures and you will learn how to solve a variety of problems of interest to civil and environmental engineers. While there will be a chance for you to put your mathematical skills obtained in 18.01, 18.02, and eventually 18.03 to use in this subject, the emphasis is on the physical understanding of why a material or structure behaves the way it does in the engineering design of materials and structures.


Detailed lecture notes will be distributed for each lecture, usually covering "theoretical" aspects (derivations, etc.) in more detail or in a different manner than done during class. The subject content is defined by the material presented in lectures, recitations and reading assignments, so regular attendance is advisable.


Recitations will illustrate and/or expand concepts presented in lectures by working through example problems or conducting simple experiments. Material covered in recitations is often related to homework assignments and is considered part of the subject content, so regular attendance at one of the two weekly recitations is advisable.


After each lecture we will distribute a single summary slide. The goal of these summary slides is to convey the most important message(s) of each lecture - these should help you to review the lecture notes and prepare for quizzes and exams. The slide is not a complete summary of the contents; you should rather see it as a skeleton to guide your review of the lecture material.


At the end of each lecture, the TA will collect a brief survey in which you are asked to indicate how much of the material you understand. The survey will consist of a series of questions, for each of which you are asked to indicate if you'd be able to answer it (yes/no). This will provide us with immediate feedback about the understanding of the lecture material and will enable the instructor to react to potential difficulties or to emphasize on certain points more clearly.


We have developed detailed lecture notes for 1.050, which are used as the sole required reading for the subject. Some further reading references are given at the end of each chapter in the lecture notes, which may be of interest to you, but which are not required reading.


Problem sets will be distributed each Wednesday and are due on Wednesday the week after. Each problem set is designed to build upon the material covered in the preceding lectures and recitations. Homework assignments will be prepared by teams consisting of three students. Each team will hand in one solution, with the names of team members who contributed indicated on the cover page. Due dates for problem sets are firm and homework assignments will be corrected and handed back (with solutions) no later than two lectures after the due date.


There will be two in-class hour exams, on 2 days after Ses #16 and 3 days after Ses #28. There will also be a three-hour scheduled final exam. All exams are open-book, but bear in mind to develop an appropriate exam strategy.


The grade will be based on:


In arriving at a final letter grade, we will count the best 10 of 11 homework assignments.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Engineering mechanics i

Price on request