Extrasolar planets: physics and detection techniques

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

This course covers the basic principles of planet atmospheres and interiors applied to the study of extrasolar planets (exoplanets). We focus on fundamental physical processes related to observable exoplanet properties. We also provide a quantitative overview of detection techniques and an introduction to the feasibility of the search for Earth-like planets, biosignatures and habitable conditions on exoplanets.

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Physics

Course programme

Physics I: Classical Mechanics (8.01), Single Variable Calculus (18.01)


This course covers the basic principles of planet atmospheres and interiors applied to the study of extrasolar planets (exoplanets). We focus on fundamental physical processes related to observable exoplanet properties. We also provide a quantitative overview of detection techniques and an introduction to the feasibility of the search for Earth-like planets, biosignatures and habitable conditions on exoplanets.


This course is a systematic introduction to the fundamental concepts and principles of the field of exoplanet detection and characterization. The basic exoplanet detection methods are covered, based on the underlying physical concepts. Physical principles behind planet characterization are explored, and tied to observations and interpretation of exoplanet properties such as composition and temperature. Weekly problems sets are assigned, and include exercises related to using real data on exoplanets to derive their physical properties such as mass, radius, density, temperature or composition. Exoplanet research is a young field in planetary science and the material presented in the course covers the major techniques and methods used by exoplanet researchers.


The topic of exoplanets is so new and fast-paced that no textbooks exist. Instead we will use the book:


de Pater, Imke, and Jack J. Lissauer. Planetary Sciences. Cambridge, UK : Cambridge University Press, c2001. ISBN: 9780521482196.
This book is recommended and not required.


An additional supplementary book is:


H. Karttunen, et al. Fundamental Astronomy. New York, NY: Springer-Verlag, c2007. ISBN: 9783540341437.
This is an introductory astronomy textbook.


To compensate for the lack of an appropriate textbook, there will be regular reading handouts in lectures. These handouts include conceptual descriptions as well as analytical derivations. It is expected that regular attendance in lecture will offer the opportunity to pick up these handouts. Should you miss a handout, they will also be posted online.


This is a discussion-based and problem-solving-based class. Over half of the class time will be spent problem-solving in small groups or in class discussion. In addition, your questions and comments are extremely valuable. Discussions during class time are especially appropriate given the lack of an exoplanet textbook. Discussion is highly encouraged to fill gaps in the lecture material, to guide the pace of the class, and for you to inquire about the meaning, relevance, and importance of lecture material.


Approximately weekly problem sets will be handed out on Thursdays and due the following Thursday before class.


A note on submission of work. Collaboration on homework sets is permitted. The manner in which you present your work, therefore, is just as important (and in some cases more so) than the final answer. Be sure to delineate each step along the way. Show a clear and logical approach to your solution. This will make your problem sets both a better reference to you and easier for partial credit (if so deserving) for grading.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


Extrasolar planets: physics and detection techniques

Price on request