Fundamentals of Nanoelectronics: Basic Concepts - Purdue University

edX

Course

Online

Free

Description

  • Type

    Course

  • Methodology

    Online

  • Start date

    Different dates available

Presents key concepts in nanoelectronics and mesoscopic physics and relates them to the traditional view of electron flow in solids.With this course you earn while you learn, you gain recognized qualifications, job specific skills and knowledge and this helps you stand out in the job market.

Facilities

Location

Start date

Online

Start date

Different dates availableEnrolment now open

About this course

This course is intended to be broadly accessible to students in any branch of science or engineering.  Students should have a basic familiarity with calculus and elementary differential equations.  No prior acquaintance with quantum mechanics is assumed.

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

This centre's achievements

2017

All courses are up to date

The average rating is higher than 3.7

More than 50 reviews in the last 12 months

This centre has featured on Emagister for 8 years

Subjects

  • Basic IT
  • Electronics
  • Nanoelectronics
  • Solids
  • Mesoscopic

Course programme

EdX keeps courses open for enrollment after they end to allow learners to explore content and continue learning. All features and materials may not be all available. Check back often to see when new course start dates are announced.

The modern smartphone is enabled by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. Interestingly the same amazing technology has also led to a deeper understanding of the nature of current flow on an atomic scale and my aim is to make these lessons from nanoelectronics accessible to anyone in any branch of science or engineering. I will assume very little background beyond linear algebra and differential equations, although we will be discussing advanced concepts in non-equilibrium statistical mechanics that should be of interest even to specialists.

In the first half of this course (4 weeks) we will introduce a new perspective connecting the quantized conductance of short ballistic conductors to the familiar Ohm's law of long diffusive conductors, along with a brief description of the modern nanotransistor. In the second half (4 weeks) we will address fundamental conceptual issues related to the meaning of resistance on an atomic scale, the interconversion of electricity and heat, the second law of thermodynamics and the fuel value of information.

Overall I hope to show that the lessons of nanoelectronics lead naturally to a new viewpoint, one that changes even some basic concepts we all learn in freshman physics. This unique viewpoint not only clarifies many old questions but also provides a powerful approach to new questions at the frontier of modern nanoelectronics, such as how devices can be built to control the spin of electrons.

This course was originally offered in 2012 on nanoHUB-U and the accompanying text was subsequently published by World Scientific. I am preparing a second edition for publication in 2015, which will be used for this course. The manuscript will be made available to registered students.

Additional information

Supriyo Datta Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, Purdue University https://nanohub.org/groups/supriyodatta   Supriyo Datta started his career in ultrasonics, but since 1985 has focused on current flow in nanoscale electronic devices. The approach pioneered by his group for the description of quantum transport has been widely adopted in the field of nano electronics and he was elected to the National Academy of Engineering (NAE) for this work. This approach, combining the non-equilibrium Green function (NEGF) formalism of many-body physics with the Landauer formalism from mesoscopic physics, is described in his books Electronic Transport in Mesoscopic Systems (Cambridge 1995), Quantum Transport: Atom to Transistor (Cambridge 2005) and Lessons from Nanoelectronics (World Scientific 2012). 

Fundamentals of Nanoelectronics: Basic Concepts - Purdue University

Free