The microbiome and drug delivery: cross-species communication in health and disease

Bachelor's degree

In Maynard (USA)

Price on request

Description

  • Type

    Bachelor's degree

  • Location

    Maynard (USA)

  • Start date

    Different dates available

There are more microbes permanently living in our gut than there are cells in the human body. This rich community of bacteria, fungi and viruses, called the microbiome, plays a central role in human health and disease. Recent research has linked this passenger community to nutrition, circadian rhythms, infectious disease, inflammatory disease, cancer, diabetes, arthritis and even immune system and nervous system development. How can we analyze such a complex system? Can we exploit the microbiome to improve human health? Can interactions with microbes be harnessed for drug delivery?

Facilities

Location

Start date

Maynard (USA)
See map
02139

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Communication Training
  • Diabetes
  • Biology
  • Primary
  • Nutrition

Course programme

Lectures: 1 session / week, 2 hours / session


A general knowledge of molecular biology, biochemistry or cell biology will be helpful. This includes courses such as:


7.05 Biological Chemistry


7.06 Cell Biology


7.28 Molecular Biology


or their equivalents. Chemistry, Chemical Engineering, and Bioengineering students are highly encouraged to attend.


There are more microbes permanently living in our gut than there are cells in the human body. This rich community of bacteria, fungi and viruses, called the microbiome, plays a central role in human health and disease. Recent research has linked this passenger community to nutrition, circadian rhythms, infectious disease, inflammatory disease, cancer, diabetes, arthritis and even immune system and nervous system development. The connections seem to be so far-reaching that some scientists are starting to consider this human-microbiome system as a "holobiont" or "superorganism."


Why are we realizing this situation only now? Are microbes actually interacting with us so fundamentally? What are the mechanisms by which effects of the microbiome are mediated? Can we survive without our microbiome? How can we analyze such a complex system? Can we exploit the microbiome to improve human health? Can interactions with microbes be harnessed for drug delivery?


In this course, we will explore the primary scientific literature to find the answers to these questions and learn to critically assess observational and experimental data and to distinguish between correlation and causality. We will discuss several of the key signaling molecules that mediate the interactions between humans and their microbiomes, such as human-produced antimicrobial peptides, microbial pheromones, bacterial peptide toxins and neuroactive microbial metabolites. We will learn about recent methods that make possible the analysis of these interactions. In particular, we will consider microfluidics, the technology of manipulating fluid in micro to pico liter scales in networks of tiny channels, as an emerging tool for the investigation of microbiome signaling. We will learn about other cutting-edge technologies, such as next-generation DNA and RNA sequencing and the use of germ-free mice.


Finally, we will discuss how a large reduction in the cost of DNA synthesis is enabling the development of synthetic microbes that can be used to interrogate and manipulate the microbiome. Together these mechanistic insights and emerging tools are transforming microbiome research and might lead to new types of therapeutics and drug delivery for improving human health.


This course will introduce students to the primary scientific literature surrounding the exciting field of microbiome biology and therapeutics. Students will learn:


The class will meet weekly for two hours. Each week, students will read two papers from the primary research literature and critically evaluate these papers focusing on experimental design, control experiments, methods and interpretation of the data. At the end of each class, the instructors will give a short introduction to the papers for the following week.


Students will visit Gingko Bioworks, a company that is at the forefront of designing and building microbes for diverse applications.


Students will complete one written assignment, due in Week 7, and one final presentation, due on the last session of the course.


The course will be graded as "pass" or "fail." A passing grade will be given to students who attend the class, participate in discussions, and complete both assignments in a satisfactory manner.


Don't show me this again


This is one of over 2,200 courses on OCW. Find materials for this course in the pages linked along the left.


MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum.


No enrollment or registration. Freely browse and use OCW materials at your own pace. There's no signup, and no start or end dates.


Knowledge is your reward. Use OCW to guide your own life-long learning, or to teach others. We don't offer credit or certification for using OCW.


Made for sharing. Download files for later. Send to friends and colleagues. Modify, remix, and reuse (just remember to cite OCW as the source.)


Learn more at Get Started with MIT OpenCourseWare


The microbiome and drug delivery: cross-species communication in health and disease

Price on request