Translational Health Sciences

Postgraduate

In Bristol

£ 4,235 + VAT

Description

  • Type

    Postgraduate

  • Location

    Bristol

  • Start date

    Different dates available

Programme overview
Translational Health Sciences is part of the Bristol Medical School. Staff and students are based in high-quality research and clinical settings across the city, including the Bristol Royal Infirmary, Southmead Hospital and the advanced laboratory facilities in the Dorothy Hodgkin Building. The school undertakes laboratory-based, translational and applied research, fostering a high level of collaboration between staff and students. It comprises a mix of basic and medically trained scientists, enabling high-quality collaborative translational and healthcare research using a wide range of techniques - from molecular biology to epidemiology.
Our work focuses on clinical research and a significant part of this has translated to clinical trials that are led by the school. These include ongoing trials related to:
cardiac surgery
uveitis
childhood vaccination and anti-microbial therapy
treatment of obesity in childhood and adult life
therapies for diabetic neuropathy
treatment of early Alzheimer's disease
neurosurgical approaches to Parkinson's disease
immunotherapy and bone marrow stem cell therapy in multiple sclerosis
interventions for treatment of neonatal brain injury
type 1 diabetes prevention
improvement of outcomes from joint replacement
novel methods of glucocorticoid treatment in critical illness and inflammatory disorders
treatment of nephrotic syndrome
management of pleural disease.
These studies are complemented by translational clinical studies, engaging both clinical and basic scientists.
School staff are leaders in their fields, with extensive national and international research collaborations providing a wide range of skills that contribute to a first-class working environment in which to undertake interdisciplinary research and teaching.

Facilities

Location

Start date

Bristol (Avon)
See map
Senate House, Tyndall Avenue, BS8 1TH

Start date

Different dates availableEnrolment now open

About this course

An upper second-class honours degree (or international equivalent) in a biological or related science or medical subject.
See international equivalent qualifications on the International Office website.
English language requirements
If English is not your first language, you need to meet this profile level:
Profile E
Further information about English language requirements and profile levels.
Read the programme admissions statement for important information on entry requirements, the application process and supporting documents required.

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

This centre's achievements

2018

All courses are up to date

The average rating is higher than 3.7

More than 50 reviews in the last 12 months

This centre has featured on Emagister for 14 years

Subjects

  • Neuroscience
  • Team Training
  • Rheumatology
  • Orthopaedic
  • NHS Training
  • Medical training
  • Endocrinology
  • Clinical Studies
  • Clinical Research
  • Depression
  • Obesity
  • Joint
  • Medical
  • Diabetes
  • School
  • Cell Biology
  • Biology
  • Primary
  • Staff
  • Surgery

Course programme


Research groups

Cardiovascular

Bristol Cardiovascular aims to foster multidisciplinary cardiovascular, basic and applied research by stimulating collaboration between the University's cardiovascular research groups. Our mission remains to gain a fundamental understanding of the cardiovascular system in health and disease, to use this knowledge for the benefit of our patients, and to provide leadership in training the next generation of top scientists and academic clinicians.

Research interests include:

  • academic cardiac surgery - adult and paediatric
  • atherothrombosis and vascular cell biology
  • cardiac biochemistry
  • cardiology
  • cardiovascular physiology and electrophysiology
  • hypertension
  • regenerative medicine
  • cardiovascular imaging.
Child Health

The School of Translational Health Sciences is closely linked to the Bristol Royal Hospital for Children, St Michael's Hospital (Women's and Children's Services, University Hospitals Bristol NHS Trust), and North Bristol NHS Trust, where there are active programmes of research in bone marrow transplantation, burns, cardiology, dermatology, emergency medicine, endocrinology growth and obesity, gastroenterology, infection and immunity, intensive care and anaesthetics, metabolic diseases, neurosciences, nephrology, oncology, respiratory medicine, rheumatology, surgery and neonatal medicine. The Bristol Nutrition BRU has a theme on nutrition in childhood. See also the Bristol Neonatal Neurology group below.

Clinical Neurosciences

The Institute of Clinical Neurosciences, which offers a strong clinical dimension to Bristol Neuroscience, is a confederation of research groups dedicated to translational neuroscience, housed in purpose-built pre-clinical and clinical research facilities at Southmead Hospital:

  • The Dementia Research group conducts pre-clinical and clinical research using molecular genetic, biochemical, cell culture-based and neuropathological approaches, as well as cognitive and neuroimaging studies in patients, which are led by the ReMemBr Group. The aim is to translate pre-clinical findings into applications that benefit patients with dementia, focusing on the molecular epidemiology and pathogenesis of Alzheimer's disease and related dementias. Much research is underpinned by investigations on human post-mortem brain tissue; the group also has oversight of the South West Dementia Brain Bank.
  • Functional Neurosurgery researchers are focused on developing novel techniques of direct intracranial drug delivery and on pioneering work in deep brain stimulation surgery, with translational applications in the treatment of patients with Parkinson's disease, epilepsy, essential tremor and primary brain tumour.
  • The Multiple Sclerosis and Stem Cell group focuses on the underlying cell biology of multiple sclerosis, the development and implementation of myelin repair treatments, and understanding mechanisms of neurodegeneration. We are interested in understanding the biology of tissue damage in MS, particularly injury to grey matter and to neurons and axons. Clinical research focuses on the causes of disability in chronic MS and a study of Primary Progressive MS.
  • The Bristol Neonatal Neurology group, based at St Michael's Hospital, investigates the mechanisms of brain injury in newborn infants and develops treatments to protect and repair the neonatal brain, reducing long-term disability. We do both pre-clinical and clinical research, including long-term development follow-up with brain imaging.
  • Brain Tumour research aims to investigate each individual’s tumour according to what is driving the abnormal growth of that specific tumour. Surgery and a range of therapies can then be tailored to the individual, providing a personalised medicine approach.
Diabetes and Metabolism

The work of the Diabetes and Metabolism research group examines the causes, prediction and possible prevention of childhood type 1 diabetes. We have access to unique populations and sample collections for studying the pre-diabetic period, and have pioneered diabetes prediction methods based on immune, genetic and metabolic markers. More recent developments include focusing on novel mechanisms underlying autoimmunity, including molecular and histological analysis of type 1 diabetes pancreas and pancreatic lymph nodes; international collaborations on the immunogenetic factors controlling the rate of progression to clinical symptoms; use of recombinant methodologies to study in detail the beta cell antigens that the immune system recognises as foreign in type 1 diabetes; and seeking to understand why individuals with type 1 diabetes are at increased risk of thyroid and coeliac disease.

IGFs and Metabolic Endocrinology

The IMEG research group focuses on the role of nutrition in the development of chronic diseases, particularly obesity, insulin-resistance and epithelial cancers. We work closely with the Paediatric Obesity Clinic, ALSPAC (Avon Longitudinal Study of Parents and Children) and the School of Social and Community Medicine to examine dietary and lifestyle determinants of obesity, insulin-resistance and common cancers as well as the role played by insulin-like growth factors (IGFs) in their development. The group works with large-cohort studies of populations, smaller clinical studies, and laboratory investigations using human cell models, including unique primary cultures of human adipocytes and skeletal muscle; and also has several cancer models including breast, prostate, bladder and colorectal investigating the cell biology of IGFs, their binding proteins and their role in cancer progression.

Integrative Neuroscience and Endocrinology

The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology are located with the MRC Centre for Synaptic Plasticity in the Dorothy Hodgkin Building in central Bristol, forming a multi-disciplinary research centre. Working together, and in collaboration with the Faculty of Health Science's Stem Cell Research Group housed in the medical school, our researchers use state-of-the-art techniques in basic and translational neuroscience to identify novel therapies to treat major neurological diseases, including Alzheimer's disease, stress-related psychiatric disease (such as depression) and neuroendocrine diseases. Major research areas are:

  • Alzheimer's and neurodegenerative disease: Studying the role of synaptic plasticity in learning and memory, and in particular the physiological and molecular mechanisms of long-term potentiation (LTP) and long-term depression (LTD); using viral delivery techniques to investigate the genes that regulate neuronal function in health and disease.
  • Cell signalling and stem cells: Exploring the mechanisms by which cells respond and adapt to extra-cellular stimuli including hormones, neurotransmitter and growth factors. This is particularly pertinent to work on hippocampal, hypothalamic and pituitary cell populations, as well as on the signalling networks controlling cell fate decisions such as differentiation, survival, death and commitment. Here, much emphasis is on potential treatments for neurodegenerative diseases and stress-related disorders including Parkinson's, Huntington's, Alzheimer's disease and depression.
  • Stress and endocrinology: Investigating the mechanisms through which the brain responds to different environmental stimuli; the hypothalamo-pituitary-adrenal (HPA) axis and how this responds to stress, exercise and altered time cues; how changes in HPA activity alter mechanisms of synaptic plasticity; the transcriptomic responses to osmotic and cardiovascular stimuli; and the responses of the reproductive hypothalamo-pituitary-gonadal axis.
  • Synaptic plasticity and repair: Studying the ability of synapses to alter activity in response to different stimuli, which is thought to underlie central functions such as learning, memory and chronic pain. Aberrant plasticity is also thought to be involved in a wide range of neurological conditions including neurodegenerative disease, schizophrenia and epilepsy. Understanding the mechanisms involved in these processes and how they relate to both normal and pathophysiological function. Also, investigating the use of pluripotent stem cells as a mechanism to effect repair of the central nervous system following age-related or traumatic damage to the brain.
  • Integrative neuroscience and behaviour: Investigating the neurobiological mechanisms underlying adaptive and cognitive behaviour, studies conducted at the molecular, cellular, neuroendocrine, neurophysiological, behavioural, and systems level. In our integrative research designs we apply state-of-the art epigenetic, lentiviral, electrophysiological and imaging technologies to study changes in neuron function that form the basis of behavioural responses and memory formation, with the aim of improving treatment of stress-related psychiatric disorders such as major depression and anxiety.
Musculoskeletal

The Musculoskeletal Research Unit (MRU) encompasses a range of quantitative and qualitative research activity, including clinical trials, predominantly in orthopaedic surgery and rheumatology. The MRU specialises in joint, bone and muscle research, with studies spanning osteoarthritis, osteoporosis, fragility fractures, rheumatoid arthritis, joint replacement, muscle function and toxicology.

Orthopaedic Surgery: Both laboratory and clinical research, focusing on joint replacement, osteoarthritis, first-in-human clinical trials, long-term pain and related musculoskeletal conditions. The group's health services and clinical research focuses on improving outcomes of joint replacement, the treatment of joint disorders and trauma. The research programme involves clinical trials, cohort studies, systematic reviews and qualitative research. The group also hosts statistical analysis of the National Joint Registry and runs major programmes of research supported by the NIHR to improve outcomes after hip and knee replacement, the treatment of cartilage injuries and traumatic conditions. Methodological expertise includes outcome assessment, randomised trials, epidemiology and medical statistics, qualitative research and systematic reviews. Clinical studies use a variety of data collection techniques, including quantitative sensory testing, accelerometry, interviews and self-report questionnaires. Basic science research is concerned with the safety of orthopaedic implants, with a particular focus on the systemic effects of cobalt and chrome. The group also works in the field of orthobiologics to promote bone regeneration, including biofunctionalising titanium, and developing enhanced bone graft substitutes.

Academic Rheumatology: Research aims to use epidemiological methods to understand the aetiology, genetics and outcomes in a range of conditions, such as osteoporosis, osteoarthritis and other musculoskeletal conditions. The group is affiliated to the MRC Integrative Epidemiology Unit. Current research includes: studies of the determinants of bone development based through adolescence and in the extended family in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort; the role of physical activity in preserving bone mineral density in older people; the genetic determinants of hip shape; investigations of scoliosis, hypermobility and vertebral fractures; research to understand the clinical and genetic features of High Bone Mass syndromes; and a programme of research based on collaboration with the National Hip Fracture Database.

Obstetrics and Gynaecology

Members of the Academic Unit of Obstetrics and Gynaecology in University Hospitals Bristol NHS Trust undertake clinical research with an emphasis on pregnancy complications and pre-term labour; also laboratory research into cell regulation in the myometrium and ovary, which is often related to understanding the basis of clinical problems and improving diagnosis and therapy. Members of the academic unit based are developing new measures to improve healthcare in the field of obstetrics and parturition.

Renal

Located in state-of-the-art laboratories in the Dorothy Hodgkin Building, Bristol Renal seeks to improve the management, treatment and prevention of renal disease through understanding the molecular basis of glomerular and tubular disorders and investigating the links between renal disease and cardiovascular disease. The group’s laboratory research focuses on cellular and molecular biology of glomerular and tubular cells in culture, seeking to understand kidney function in terms of basic biochemistry and physiology, and the effects of disease states. We are taking the basic science advances into advanced models of disease, with the ultimate aim of testing new and highly targeted therapies in patients with kidney disease. Clinical research is correspondingly directed towards study and treatment of kidney disease.

Respiratory

The Academic Respiratory Unit is located at Southmead Hospital and focuses on two main research areas:

  • The Lung Cell Biology Team carries out research into a number of pulmonary diseases that typically arise due to inappropriate, excessive or uncontrolled processes in the lungs. Our basic science and translational work has focused on the inflammatory process and its regulation, which is fundamental to diseases not only of the lung, but also many other organs.
  • The Pleural Disease Team undertakes clinical trials work relating to the pleura which are particularly susceptible to diseases such as cancer and infection. Pleural fluid or air can cause debilitating symptoms to patients, so the team focuses on large-scale, practical clinical trials to improve management, overall outcomes and patient experiences. The team’s work is also expanding towards looking at the role of biomarkers and inflammatory markers in pleural diseases.


Careers

The majority of our postgraduate students develop into highly productive researchers publishing in leading peer-reviewed journals. Most go on to postdoctoral research in academia and industry, both in the UK and overseas.

Translational Health Sciences

£ 4,235 + VAT