Basic Petroleum Geology - BG

Course

In San Francisco (USA)

Price on request

Description

  • Type

    Course

  • Location

    San francisco (USA)

  • Start date

    Different dates available

Introduction to rock mechanics and geomechanical principals; Basic mechanics: Stress and strain, elasticity - linear and non-linear effects, brittle and ductile rock behavior, poroelasticity, time-dependent-effects - consolidation and creep, normal and shear forces, hoop stresses, the Kirsch solution, 2-D and 3-D stress components, tensors, the stress ellipsoid, and basic rock failure (Mohr-Coulomb theory); Rock mechanical properties: Ability to bear stresses - compressive strength, tensile strength, deformation response to stresses - elastic moduli, Poisson's ratio; Pressure, stresses, and loads: Principal stresses, in-situ stress regime, total-stress and effective-stress, temperature effects, nature and origin of pore pressure; Geomechanics and structural geology: Faulting and folding, tectonics, regional structural analysis, regional and localized stress; Wellbore and field measurement of in-situ (earth) stresses: Stresses around boreholes, overburden stress, horizontal stresses, leakoff tests, mini-frac tests, formation testers, other pressure transient techniques, and tool deployment; Overview of common rock mechanics tests (lab demonstrations): unconfined compression, triaxial compression, hydrostatic compression, poly-axial, multi-stage triaxial, thick-walled cylinder, direct tensile strength, indirect (Brazilian) tensile strength, direct shear, uniaxial strain (compaction), and "quick look" (rock hardness) and "scratch" tests; Stress orientation techniques: Geological/mapping methods, wireline logging techniques, analastic strain recovery, differential strain curve analysis, acoustic anisotropy; Elastic, plastic, and viscous models of rock behavior: Deformation mechanisms and common models used in petroleum related rock mechanics; Borehole stability: Borehole stresses, wellbore placement, shale characterization, review of borehole stability models, high angle and horizontal drilling, pilot hole evaluation, multi-lateral wellbores, borehole...

Facilities

Location

Start date

San Francisco (USA)
See map
333 Bush Street, Suite 2400, 94104

Start date

Different dates availableEnrolment now open

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • Mechanics
  • Petroleum
  • Gas
  • Basic IT training
  • Basic IT
  • Basic
  • Geology
  • Production
  • Oil and Gas
  • Performance
  • Management
  • Restoration
  • IT Management
  • Pilot
  • Horizontal Drilling
  • Evaluation
  • Reservoir Engineering
  • Options
  • Engineering
  • Design
  • Skills and Training
  • Quality
  • Team Training
  • Employee Motivation
  • Basic Skills
  • Quality Training
  • Drape
  • Performance Management
  • Communications
  • Leadership
  • Coaching
  • Supervisor
  • Project
  • Planning
  • Motivation

Course programme

Training Course Content

Introduction to rock mechanics and geomechanical principals; Basic mechanics: Stress and strain, elasticity - linear and non-linear effects, brittle and ductile rock behavior, poroelasticity, time-dependent-effects - consolidation and creep, normal and shear forces, hoop stresses, the Kirsch solution, 2-D and 3-D stress components, tensors, the stress ellipsoid, and basic rock failure (Mohr-Coulomb theory); Rock mechanical properties: Ability to bear stresses - compressive strength, tensile strength, deformation response to stresses - elastic moduli, Poisson's ratio; Pressure, stresses, and loads: Principal stresses, in-situ stress regime, total-stress and effective-stress, temperature effects, nature and origin of pore pressure; Geomechanics and structural geology: Faulting and folding, tectonics, regional structural analysis, regional and localized stress; Wellbore and field measurement of in-situ (earth) stresses: Stresses around boreholes, overburden stress, horizontal stresses, leakoff tests, mini-frac tests, formation testers, other pressure transient techniques, and tool deployment; Overview of common rock mechanics tests (lab demonstrations): unconfined compression, triaxial compression, hydrostatic compression, poly-axial, multi-stage triaxial, thick-walled cylinder, direct tensile strength, indirect (Brazilian) tensile strength, direct shear, uniaxial strain (compaction), and "quick look" (rock hardness) and "scratch" tests; Stress orientation techniques: Geological/mapping methods, wireline logging techniques, analastic strain recovery, differential strain curve analysis, acoustic anisotropy; Elastic, plastic, and viscous models of rock behavior: Deformation mechanisms and common models used in petroleum related rock mechanics; Borehole stability: Borehole stresses, wellbore placement, shale characterization, review of borehole stability models, high angle and horizontal drilling, pilot hole evaluation, multi-lateral wellbores, borehole breakouts, fluid-related instability, drilling through depleted zones and casing shoe decisions, stuck pipe, and case histories (software demonstration); Sand control: Review of sand production mechanisms, completion techniques in unstable formations, gravel pack design, special liners and screens, and case histories; Fracture mechanics: Naturally fractured reservoirs, hydraulic fracturing, stimulation options, and case history; Reservoir engineering applications: Compaction drive, reservoir compaction and compressibility, subsidence, casing shear, depletion and effective stress, and case history; Wireline log predicted mechanical properties: density logging, acoustic logging, Biot theory, dipole and multi-pole (dynamic) acoustic logging, seismic data and Amplitude Versus Offset (AVO), and shear- and compressional-wave anistropy (lab demonstration); Data integration

Minerals and rocks; Plate tectonics; Geological times; Weathering and erosion; Deposition; Diagenesis; Reservoirs; Structural geology and petroleum; Origin, migration, and trapping of petroleum

Reservoir fluid properties; Coring practices and rock properties; Fundamentals of fluid flow; Reservoir fluid distribution; Reservoir classification; Reservoir drive mechanisms; Oil and gas well performance; Pressure buildup analysis; Oil displacement concepts; Estimation of oil-in-place and gas-in-place; Recovery techniques

Compressional structural styles and their plate-tectonic habitats; Wrench assemblage; Transpressive structures; Detached (thin-skinned) styles including forearc, backarc, collisional, and deep-water thrust-fold belts; Basement-involved styles including compressional drape folds, predictive models for rotated blocks and subthrust plays; Inversion; Structural validation criteria; Selecting the best balancing and restoration technique; Flexural-slip restoration; Area-depth technique for section validation, depth to detachment, bed-length changes and fault prediction; Fault-bend folds; Fault-tip folds; Fault-propagation folds; Detachment folds; Buckle folds and the break-fold model; Duplexes; Triangle zones; Growth folds; Fracturing in compressional structures; Summary of oil and gas fields

Assessing source rock quality, maturity, and petroleum-generating potential; Correlation: oil-to-oil, oil-to-source rock, gases-to-source rock; Applications of mud gas isotope data and mud gas compositions; Assessment of reservoir continuity, lateral and vertical changes in oil gravity and viscosity; Geochemical assessment of frac height; Geochemical allocation of commingled production; Worldwide exploration and production case studies; Determining the origin of hydrocarbon gases found in aquifers; Project planning using actual case studies

The role and function of the leader, supervisor and manager; Understanding and applying essential behavioral management concepts; Understanding and increasing employee motivation; Understanding and applying leadership concepts; Effectively supervising a diverse workforce; Basic skills in interpersonal communications; Performance management; Coaching; Working with difficult employees; Goal Setting; Empowering subordinates; Creating positive and functional thinking about work; Making ongoing change for growth and improvement; Taking personal responsibility; Developing personal plans to improve team effectiveness

Introduction to rock mechanics and geomechanical principals; Basic mechanics: Stress and strain, elasticity - linear and non-linear effects, brittle and ductile rock behavior, poroelasticity, time-dependent-effects - consolidation and creep, normal and shear forces, hoop stresses, the Kirsch solution, 2-D and 3-D stress components, tensors, the stress ellipsoid, and basic rock failure (Mohr-Coulomb theory); Rock mechanical properties: Ability to bear stresses - compressive strength, tensile strength, deformation response to stresses - elastic moduli, Poisson's ratio; Pressure, stresses, and loads: Principal stresses, in-situ stress regime, total-stress and effective-stress, temperature effects, nature and origin of pore pressure; Geomechanics and structural geology: Faulting and folding, tectonics, regional structural analysis, regional and localized stress; Wellbore and field measurement of in-situ (earth) stresses: Stresses around boreholes, overburden stress, horizontal stresses, leakoff tests, mini-frac tests, formation testers, other pressure transient techniques, and tool deployment; Overview of common rock mechanics tests (lab demonstrations): unconfined compression, triaxial compression, hydrostatic compression, poly-axial, multi-stage triaxial, thick-walled cylinder, direct tensile strength, indirect (Brazilian) tensile strength, direct shear, uniaxial strain (compaction), and "quick look" (rock hardness) and "scratch" tests; Stress orientation techniques: Geological/mapping methods, wireline logging techniques, analastic strain recovery, differential strain curve analysis, acoustic anisotropy; Elastic, plastic, and viscous models of rock behavior: Deformation mechanisms and common models used in petroleum related rock mechanics; Borehole stability: Borehole stresses, wellbore placement, shale characterization, review of borehole stability models, high angle and horizontal drilling, pilot hole evaluation, multi-lateral wellbores, borehole breakouts, fluid-related instability, drilling through depleted zones and casing shoe decisions, stuck pipe, and case histories (software demonstration); Sand control: Review of sand production mechanisms, completion techniques in unstable formations, gravel pack design, special liners and screens, and case histories; Fracture mechanics: Naturally fractured reservoirs, hydraulic fracturing, stimulation options, and case history; Reservoir engineering applications: Compaction drive, reservoir compaction and compressibility, subsidence, casing shear, depletion and effective stress, and case history; Wireline log predicted mechanical properties: density logging, acoustic logging, Biot theory, dipole and multi-pole (dynamic) acoustic logging, seismic data and Amplitude Versus Offset (AVO), and shear- and compressional-wave anistropy (lab demonstration); Data integration

Minerals and rocks; Plate tectonics; Geological times; Weathering and erosion; Deposition; Diagenesis; Reservoirs; Structural geology and petroleum; Origin, migration, and trapping of petroleum

Reservoir fluid properties; Coring practices and rock properties; Fundamentals of fluid flow; Reservoir fluid distribution; Reservoir classification; Reservoir drive mechanisms; Oil and gas well performance; Pressure buildup analysis; Oil displacement concepts; Estimation of oil-in-place and gas-in-place; Recovery techniques

Compressional structural styles and their plate-tectonic habitats; Wrench assemblage; Transpressive structures; Detached (thin-skinned) styles including forearc, backarc, collisional, and deep-water thrust-fold belts; Basement-involved styles including compressional drape folds, predictive models for rotated blocks and subthrust plays; Inversion; Structural validation criteria; Selecting the best balancing and restoration technique; Flexural-slip restoration; Area-depth technique for section validation, depth to detachment, bed-length changes and fault prediction; Fault-bend folds; Fault-tip folds; Fault-propagation folds; Detachment folds; Buckle folds and the break-fold model; Duplexes; Triangle zones; Growth folds; Fracturing in compressional structures; Summary of oil and gas fields

Assessing source rock quality, maturity, and petroleum-generating potential; Correlation: oil-to-oil, oil-to-source rock, gases-to-source rock; Applications of mud gas isotope data and mud gas compositions; Assessment of reservoir continuity, lateral and vertical changes in oil gravity and viscosity; Geochemical assessment of frac height; Geochemical allocation of commingled production; Worldwide exploration and production case studies; Determining the origin of hydrocarbon gases found in aquifers; Project planning using actual case studies

The role and function of the leader, supervisor and manager; Understanding and applying essential behavioral management concepts; Understanding and increasing employee motivation; Understanding and applying leadership concepts; Effectively supervising a diverse workforce; Basic skills in interpersonal communications; Performance management; Coaching; Working with difficult employees; Goal Setting; Empowering subordinates; Creating positive and functional thinking about work; Making ongoing change for growth and improvement; Taking personal responsibility; Developing personal plans to improve team effectiveness

Introduction to rock mechanics and geomechanical principals; Basic mechanics: Stress and strain, elasticity - linear and non-linear effects, brittle and ductile rock behavior, poroelasticity, time-dependent-effects - consolidation and creep, normal and shear forces, hoop stresses, the Kirsch solution, 2-D and 3-D stress components, tensors, the stress ellipsoid, and basic rock failure (Mohr-Coulomb theory); Rock mechanical properties: Ability to bear stresses - compressive strength, tensile strength, deformation response to stresses - elastic moduli, Poisson's ratio; Pressure, stresses, and loads: Principal stresses, in-situ stress regime, total-stress and effective-stress, temperature effects, nature and origin of pore pressure; Geomechanics and structural geology: Faulting and folding, tectonics, regional structural analysis, regional and localized stress; Wellbore and field measurement of in-situ (earth) stresses: Stresses around boreholes, overburden stress, horizontal stresses, leakoff tests, mini-frac tests, formation testers, other pressure transient techniques, and tool deployment; Overview of common rock mechanics tests (lab demonstrations): unconfined compression, triaxial compression, hydrostatic compression, poly-axial, multi-stage triaxial, thick-walled cylinder, direct tensile strength, indirect (Brazilian) tensile strength, direct shear, uniaxial strain (compaction), and "quick look" (rock hardness) and "scratch" tests; Stress orientation techniques: Geological/mapping methods, wireline logging techniques, analastic strain recovery, differential strain curve analysis, acoustic anisotropy; Elastic, plastic, and viscous models of rock behavior: Deformation mechanisms and common models used in petroleum related rock mechanics; Borehole stability: Borehole stresses, wellbore placement, shale characterization, review of borehole stability models, high angle and horizontal drilling, pilot hole evaluation, multi-lateral wellbores, borehole breakouts, fluid-related instability, drilling through depleted zones and casing shoe decisions, stuck pipe, and case histories (software demonstration); Sand control: Review of sand production mechanisms, completion techniques in unstable formations, gravel pack design, special liners and screens, and case histories; Fracture mechanics: Naturally fractured reservoirs, hydraulic fracturing, stimulation options, and case history; Reservoir engineering applications: Compaction drive, reservoir compaction and compressibility, subsidence, casing shear, depletion and effective stress, and case history; Wireline log predicted mechanical properties: density logging, acoustic logging, Biot theory, dipole and multi-pole (dynamic) acoustic logging, seismic data and Amplitude Versus Offset (AVO), and shear- and compressional-wave anistropy (lab demonstration); Data integration

Minerals and rocks; Plate tectonics; Geological times; Weathering and erosion; Deposition; Diagenesis; Reservoirs; Structural geology and petroleum; Origin, migration, and trapping of petroleum

Reservoir fluid properties; Coring practices and rock properties; Fundamentals of fluid flow; Reservoir fluid distribution; Reservoir classification; Reservoir drive mechanisms; Oil and gas well performance; Pressure buildup analysis; Oil displacement concepts; Estimation of oil-in-place and gas-in-place; Recovery techniques

Compressional structural styles and their plate-tectonic habitats; Wrench assemblage; Transpressive structures; Detached (thin-skinned) styles including forearc, backarc, collisional, and deep-water thrust-fold belts; Basement-involved styles including compressional drape folds, predictive models for rotated blocks and subthrust plays; Inversion; Structural validation criteria; Selecting the best balancing and restoration technique; Flexural-slip restoration; Area-depth technique for section validation, depth to detachment, bed-length changes and fault prediction; Fault-bend folds; Fault-tip folds; Fault-propagation folds; Detachment folds; Buckle folds and the break-fold model; Duplexes; Triangle zones; Growth folds; Fracturing in compressional structures; Summary of oil and gas fields

Assessing source rock quality, maturity, and petroleum-generating potential; Correlation: oil-to-oil, oil-to-source rock, gases-to-source rock; Applications of mud gas isotope data and mud gas compositions; Assessment of reservoir continuity, lateral and vertical changes in oil gravity and viscosity; Geochemical assessment of frac height; Geochemical allocation of commingled production; Worldwide exploration and production case studies; Determining the origin of hydrocarbon gases found in aquifers; Project planning using actual case studies

The role and function of the leader, supervisor and manager; Understanding and applying essential behavioral management concepts; Understanding and increasing employee motivation; Understanding and applying leadership concepts; Effectively supervising a diverse workforce; Basic skills in interpersonal communications; Performance management; Coaching; Working with difficult employees; Goal Setting; Empowering subordinates; Creating positive and functional thinking about work; Making ongoing change for growth and improvement; Taking personal responsibility; Developing personal plans to improve team effectiveness

Introduction to rock mechanics and geomechanical principals; Basic mechanics: Stress and strain, elasticity - linear and non-linear effects, brittle and ductile rock behavior, poroelasticity, time-dependent-effects - consolidation and creep, normal and shear forces, hoop stresses, the Kirsch solution, 2-D and 3-D stress components, tensors, the stress ellipsoid, and basic rock failure (Mohr-Coulomb theory); Rock mechanical properties: Ability to bear stresses - compressive strength, tensile strength, deformation response to stresses - elastic moduli, Poisson's ratio; Pressure, stresses, and loads: Principal stresses, in-situ stress regime, total-stress and effective-stress, temperature effects, nature and origin of pore pressure; Geomechanics and structural geology: Faulting and folding, tectonics, regional structural analysis, regional and localized stress; Wellbore and field measurement of in-situ (earth) stresses: Stresses around boreholes, overburden stress, horizontal stresses, leakoff tests, mini-frac tests, formation testers, other pressure transient techniques, and tool deployment; Overview of common rock mechanics tests (lab demonstrations): unconfined compression, triaxial compression, hydrostatic compression, poly-axial, multi-stage triaxial, thick-walled cylinder, direct tensile strength, indirect (Brazilian) tensile strength, direct shear, uniaxial strain (compaction), and "quick look" (rock hardness) and "scratch" tests; Stress orientation techniques: Geological/mapping methods, wireline logging techniques, analastic strain recovery, differential strain curve analysis, acoustic anisotropy; Elastic, plastic, and viscous models of rock behavior: Deformation mechanisms and common models used in petroleum related rock mechanics; Borehole stability: Borehole stresses, wellbore placement, shale characterization, review of borehole stability models, high angle and horizontal drilling, pilot hole evaluation, multi-lateral wellbores, borehole breakouts, fluid-related instability, drilling through depleted zones and casing shoe decisions, stuck pipe, and case histories (software demonstration); Sand control: Review of sand production mechanisms, completion techniques in unstable formations, gravel pack design, special liners and screens, and case histories; Fracture mechanics: Naturally fractured reservoirs, hydraulic fracturing, stimulation options, and case history; Reservoir engineering applications: Compaction drive, reservoir compaction and compressibility, subsidence, casing shear, depletion and effective stress, and case history; Wireline log predicted mechanical properties: density logging, acoustic logging, Biot theory, dipole and multi-pole (dynamic) acoustic logging, seismic data and Amplitude Versus Offset (AVO), and shear- and compressional-wave anistropy (lab demonstration); Data integration

Minerals and rocks; Plate tectonics; Geological times; Weathering and erosion; Deposition; Diagenesis; Reservoirs; Structural geology and petroleum; Origin, migration, and trapping of petroleum

Reservoir fluid properties; Coring practices and rock properties; Fundamentals of fluid flow; Reservoir fluid distribution; Reservoir classification; Reservoir drive mechanisms; Oil and gas well performance; Pressure buildup analysis; Oil displacement concepts; Estimation of oil-in-place and gas-in-place; Recovery techniques

Compressional structural styles and their plate-tectonic habitats; Wrench assemblage; Transpressive structures; Detached (thin-skinned) styles including forearc, backarc, collisional, and deep-water...

Additional information