Engineering & Applied Science

PhD

In New Haven (USA)

Price on request

Description

  • Type

    PhD

  • Location

    New haven (USA)

Professors Richard Carson, Nicholas Christakis, Robin de Graaf, James Duncan, Karen Hirschi, Jay Humphrey, Fahmeed Hyder, Andre Levchenko, Evan Morris, Laura Niklason, Xenophon Papademetris, Douglas Rothman, W. Mark Saltzman, Martin Schwartz, Fred Sigworth, Brian Smith, Lawrence Staib, Hemant Tagare, Paul Van Tassel, Steven Zucker (Computer Science)

Facilities

Location

Start date

New Haven (USA)
See map
06520

Start date

On request

About this course

Biological and medical devices, biological signals and sensors, biomaterials, biomechanics, biophotonics, computational medicine, computer vision, digital image analysis and processing, drug delivery, energy metabolism, gene therapy, modeling in mechanobiology, MRI, MRS, PET and tracer kinetic modeling, nanomedicine, network analysis, the physics of image formation (MRI, optics, ultrasound, nuclear medicine, and X-ray), physiology and human factors engineering, signaling pathways, systems biology, systems medicine, tissue engineering and regenerative medicine, and vascular biology.Fields include nanomaterials, soft matter, interfacial phenomena, biomolecular engineering, energy, water and air quality, and sustainability.Algorithms and computational complexity, artificial intelligence, data networking, databases, graphics, machine learning, programming languages, robotics, scientific computing, security and privacy, and systems.Fields include biomedical sensory systems, communications and signal processing, neural networks, control systems, wireless networks, sensor networks, microelectromechanical and nanomechanical systems (MEMS and NEMS), nanoelectronic science and technology, optoelectronic materials and devices, semiconductor materials and devices, quantum and nonlinear photonics, quantum materials and engineering, computer engineering, computer architecture, hardware security, and VLSI design and testing.Fluids and thermal sciences Suspensions; electrospray theory and characterization; electrical propulsion applications; electrified and magnetized interfaces of electrically conducting liquids and ferrofluids; combustion and flames; computational methods for fluid dynamics and reacting flows; turbulence; laser diagnostics of reacting and nonreacting flows; and magnetohydrodynamics.

The online publication Qualification Procedure for the Ph.D. Degree in Engineering & Applied Science describes in detail all requirements in Biomedical Engineering, Chemical & Environmental Engineering, Electrical Engineering, and Mechanical Engineering & Materials Science. The student is strongly encouraged to read it carefully; key requirements are briefly summarized below. See Computer Science’s departmental entry in this bulletin for special requirements for the Ph.D. in Computer Science .Biomedical Engineering Physiological Systems (ENAS 550), Physical and Chemical Basis of...

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

Subjects

  • GCSE Physics
  • Probability
  • Computational
  • Biomedical
  • Programming
  • Medical training
  • Medical
  • Engineering
  • Systems
  • Imaging
  • Materials
  • Physiology
  • Thermodynamics
  • Mechanics
  • Design
  • Biology
  • Statistics
  • Algorithms
  • Presentation
  • Conflict

Course programme

Courses

The list of courses may be slightly modified by the time term begins. Please visit for the most updated course listing.

ENAS 500b, Mathematical Methods IJ. Rimas Vaišnys

A beginning, graduate-level introduction to ordinary and partial differential equations, vector analysis, linear algebra, and complex functions. Laplace transform, series expansion, Fourier transform, and matrix methods are given particular attention. Applications to problems frequently encountered in engineering practice are stressed throughout.
TTh 9am-10:15am

ENAS 502b, Stochastic ProcessesYihong Wu and Sahand Negahban

Introduction to the study of random processes, including Markov chains, Markov random fields, martingales, random walks, Brownian motion, and diffusions. Techniques in probability such as coupling and large deviations. Applications chosen from image reconstruction, Bayesian statistics, finance, probabilistic analysis of algorithms, genetics, and evolution.
MW 1pm-2:15pm

ENAS 508b, Responsible Conduct of ResearchEvan Morris

Required of first-year students. Presentation and discussion of topics and best practices relevant to responsible conduct of research including academic fraud and misconduct, conflict of interest and conflict of commitment, data acquisition and human subjects, use and care of animals, publication practices and responsible authorship, mentor/trainee responsibilities and peer review, and collaborative science.  0 Course cr
HTBA

ENAS 509a, Electronic Materials: Fundamentals and ApplicationsJung Han

Survey and review of fundamental issues associated with modern microelectronic and optoelectronic materials. Topics include band theory, electronic transport, surface kinetics, diffusion, materials defects, elasticity in thin films, epitaxy, and Si integrated circuits.
TTh 9am-10:15am

ENAS 510a, Physical and Chemical Basis of Bioimaging and BiosensingDouglas Rothman and Fahmeed Hyder

Basic principles and technologies for imaging and sensing the chemical, electrical, and structural properties of living tissues and biological macromolecules. Topics include magnetic resonance spectroscopy, MRI, positron emission tomography, and molecular imaging with MRI and fluorescent probes.
MW 1pm-2:15pm

ENAS 511b, Physics and Devices of Optical CommunicationJung Han

A survey of the enabling components and devices that constitute modern optical communication systems. Focus on the physics and principles of each functional unit, its current technological status, design issues relevant to overall performance, and future directions. Permission of the instructor required.
TTh 2:30pm-3:45pm

ENAS 513a, Introduction to AnalysisPeter Jones

Foundations of real analysis, including metric spaces and point set topology, infinite series, and function spaces.
TTh 1pm-2:15pm

ENAS 517b / MCDB 517b / PHYS 517b, Methods and Logic in Interdisciplinary ResearchCorey O'Hern

This half-term PEB class is intended to introduce students to integrated approaches to research. Each week, the first of two sessions is student-led, while the second session is led by faculty with complementary expertise and discusses papers that use different approaches to the same topic (for example, physical and biological or experiment and theory). Counts as 0.5 credit toward graduate course requirements.  ½ Course cr
MW 5:30pm-7:30pm

ENAS 518a / MB&B 635a, Quantitative Approaches in Biophysics and BiochemistryJulien Berro, Yong Xiong, and Jonathon Howard

The course offers an introduction to quantitative methods relevant to analysis and interpretation of biophysical and biochemical data. Topics covered include statistical testing, data presentation, and error analysis; introduction to dynamical systems; analysis of large datasets; and Fourier analysis in signal/image processing and macromolecular structural studies. The course also includes an introduction to basic programming skills and data analysis using MATLAB. Real data from research groups in MB&B are used for practice. Prerequisites: MATH 120 and MB&B 600 or equivalents, or permission of the instructors.
TTh 11:35am-12:50pm

ENAS 519b, Responsible Conduct of ResearchVincent Wilczynski

Required of first-year students in Chemical & Environmental Engineering, Electrical Engineering, and Mechanical Engineering & Materials Science. Presentation and discussion of topics and best practices relevant to responsible conduct of research including academic fraud and misconduct, conflict of interest and conflict of commitment, data acquisition and human subjects, use and care of animals, publication practices and responsible authorship, mentor/trainee responsibilities and peer review, and collaborative science.  0 Course cr
HTBA

ENAS 521a, Classical and Statistical ThermodynamicsMichael Loewenberg

A unified approach to bulk-phase equilibrium thermodynamics, bulk-phase irreversible thermodynamics, and interfacial thermodynamics in the framework of classical thermodynamics, and an introduction to statistical thermodynamics. Both the activity coefficient and the equations of state are used in the description of bulk phases. Emphasis on classical thermodynamics of multicomponents, including concepts of stability and criticality, curvature effect, and gravity effect. The choice of Gibbs free energy function covers applications to a broad range of problems in chemical, environmental, biomedical, and petroleum engineering. The introduction includes theory of Gibbs canonical ensembles and the partition functions, fluctuations; Boltzmann statistics; Fermi-Dirac and Bose-Einstein statistics. Application to ideal monatomic and diatomic gases is covered.
MW 1pm-2:15pm

ENAS 522a, Engineering and Biophysical Approaches to CancerMichael Mak

This course examines the current understanding of cancer as a complex disease and the advanced engineering and biophysical methods developed to study and treat this disease. All treatment methods are covered. Basic quantitative and computational backgrounds are required. Prerequisites: BENG 249 or equivalent and MATH 120 or equivalent.
W 3:30pm-5:20pm

ENAS 530a, Optimization TechniquesSekhar Tatikonda

Fundamental theory and algorithms of optimization, emphasizing convex optimization. The geometry of convex sets, basic convex analysis, the principle of optimality, duality. Numerical algorithms: steepest descent, Newton’s method, interior point methods, dynamic programming, unimodal search. Applications from engineering and the sciences.
TTh 1pm-2:15pm

ENAS 534a, BiomaterialsAnjelica Gonzalez

Introduction to materials, classes of materials from atomic structure to physical properties. Major classes of materials: metals, ceramics and glasses, and polymers, addressing their specific characteristics, properties, and biological applications. Throughout the presentation of the synthesis, characterization, and properties of the classes of materials, a connection is made to the selection of materials for use in specific biological applications by matching the material’s properties to those necessary for success in the application. Case studies address the successes and failures of particular materials from each of the classes in biological applications.
MW 1pm-2:15pm

ENAS 541b / CB&B 523b / MB&B 523b / PHYS 523b, Biological PhysicsSimon Mochrie

The course has two aims: (1) to introduce students to the physics of biological systems and (2) to introduce students to the basics of scientific computing. The course focuses on studies of a broad range of biophysical phenomena including diffusion, polymer statistics, protein folding, macromolecular crowding, cell motion, and tissue development using computational tools and methods. Intensive tutorials are provided for MATLAB including basic syntax, arrays, for-loops, conditional statements, functions, plotting, and importing and exporting data.
TTh 1pm-2:15pm

ENAS 544a, Fundamentals of Medical ImagingChi Liu, Dana Peters, and Gigi Galiana

Review of basic engineering and physical principles of common medical imaging modalities including X-ray, CT, PET, SPECT, MRI, and echo modalities (ultrasound and optical coherence tomography). Additional focus on clinical applications and cutting-edge technology development.
TTh 11:35am-12:50pm

ENAS 549b, Biomedical Data AnalysisRichard Carson

The course focuses on the analysis of biological and medical data associated with applications of biomedical engineering. It provides basics of probability and statistics, and analytical approaches for determination of quantitative biological parameters from noisy, experimental data. Programming in MATLAB to achieve these goals is a major portion of the course. Applications include Michaelis-Menten enzyme kinetics, Hodgkin-Huxley, neuroreceptor assays, receptor occupancy, MR spectroscopy, PET neuroimaging, brain image segmentation and reconstruction, and molecular diffusion.
TTh 1pm-2:15pm

ENAS 550a / C&MP 550a / MCDB 550a / PHAR 550a, Physiological SystemsMark Saltzman and Stuart Campbell

The course develops a foundation in human physiology by examining the homeostasis of vital parameters within the body, and the biophysical properties of cells, tissues, and organs. Basic concepts in cell and membrane physiology are synthesized through exploring the function of skeletal, smooth, and cardiac muscle. The physical basis of blood flow, mechanisms of vascular exchange, cardiac performance, and regulation of overall circulatory function are discussed. Respiratory physiology explores the mechanics of ventilation, gas diffusion, and acid-base balance. Renal physiology examines the formation and composition of urine and the regulation of electrolyte, fluid, and acid-base balance. Organs of the digestive system are discussed from the perspective of substrate metabolism and energy balance. Hormonal regulation is applied to metabolic control and to calcium, water, and electrolyte balance. The biology of nerve cells is addressed with emphasis on synaptic transmission and simple neuronal circuits within the central nervous system. The special senses are considered in the framework of sensory transduction. Weekly discussion sections provide a forum for in-depth exploration of topics. Graduate students evaluate research findings through literature review and weekly meetings with the instructor.
MWF 9:25am-10:15am

ENAS 551b, Biotransport and KineticsKathryn Miller-Jensen

Creation and critical analysis of models of biological transport and reaction processes. Topics include mass and heat transport, biochemical interactions and reactions, and thermodynamics. Examples from diverse applications, including drug delivery, biomedical imaging, and tissue engineering.
MW 9am-10:15am

ENAS 553a, Immuno-EngineeringTarek Fahmy

An advanced class that introduces immunology principles and methods to engineering students. The course focuses on biophysical principles and biomaterial applications in understanding and engineering immunity. The course is divided into three parts. The first part introduces the immune system: organs, cells, and molecules. The second part introduces biophysical characterization and quantitative modeling in understanding immune system interactions. The third part focuses on intervention, modulation, and techniques for studying the immune system with emphasis on applications of biomaterials for intervention and diagnostics.
TTh 11:35am-12:50pm

ENAS 555b, Vascular MechanicsJay Humphrey

This course is designed to enable students to apply methods of continuum biomechanics to study diverse vascular conditions and treatments, including aging, atherosclerosis, aneurysms, effects of hypertension, design of tissue-engineered constructs, and vein grafts from an engineering perspective. Emphasis is placed on ensuring that the mechanics is driven by advances in the vascular mechanobiology.
TTh 1pm-2:15pm

ENAS 558a, Introduction to BiomechanicsMichael Murrell

An introduction to the biomechanics used in biosolid mechanics, biofluid mechanics, biothermomechanics, and biochemomechanics. Diverse aspects of biomedical engineering, from basic mechanobiology to characterization of materials behaviors and the design of medical devices and surgical interventions.
TTh 9am-10:15am

ENAS 559a, Neuromuscular BiomechanicsMadhusudhan Venkadesan

Mechanics and control of animal movement, including skeletal muscle mechanics, systems-level neural and sensory physiology, elements of feedback control, and optimal control. Deriving equations of motion for multibody mechanical systems that are actuated by muscles or muscle-like motors; incorporating sensory feedback; analyzing system properties such as stability and energetics.
MW 4pm-5:15pm

ENAS 561b, Dynamical Systems in BiologyThierry Emonet and Jonathon Howard

This course covers advanced topics in computational biology. How do cells compute, how do they count and tell time, how do they oscillate and generate spatial patterns? Topics include time-dependent dynamics in regulatory, signal-transduction, and neuronal networks; fluctuations, growth, and form; mechanics of cell shape and motion; spatially heterogeneous processes; diffusion. This year, the course spends roughly half its time on mechanical systems at the cellular and tissue level, and half on models of neurons and neural systems in computational neuroscience. Prerequisite: MCDB 561 or equivalent, or a 200-level biology course, or permission of the instructor.
TTh 2:30pm-3:45pm

ENAS 567b, Systems Biology of Cell SignalingAndre Levchenko

This course designed for graduate and advanced undergraduate students is focused on systems biology approaches to the fundamental processes underlying the sensory capability of individual cells and cell-cell communication in health and disease. The course is designed to provide deep treatment of both the biological underpinnings and mathematical modeling of the complex events involved in signal transduction. As such, it can be attractive to students of biology, bioengineering, biophysics, computational biology, and applied math. The class is part of the planned larger track in systems biology, being one of its final, more specialized courses. In spite of this, each lecture has friendly introduction to the specific topic of interest, aiming to provide sufficient refreshment of the necessary knowledge. The topics have been selected to represent both cutting-edge directions in systems analysis of signaling processes and exciting settings to explore, making learning complex notions more enjoyable. Prerequisites: basic knowledge of biochemistry and cell biology, as well as programming experience and basic notions from probability theory and differential equations.
MW 4pm-5:15pm

ENAS 570b / C&MP 560b / MCDB 560b / PHAR 560b, Cellular and Molecular Physiology: Molecular Machines in Human DiseaseEmile Boulpaep

The course focuses on understanding the processes that transfer molecules across membranes at the cellular, molecular, biophysical, and physiological levels. Students learn about the different classes of molecular machines that mediate membrane transport, generate electrical currents, or perform mechanical displacement. Emphasis is placed on the relationship between the molecular structures of membrane proteins and their individual functions. The interactions among transport proteins in determining the physiological behaviors of cells and tissues are also stressed. Molecular motors are introduced and their mechanical relationship to cell function is explored. Students read papers from the scientific literature that establish the connections between mutations in genes encoding membrane proteins and a wide variety of human genetic diseases.
MWF 9:25am-10:15am

ENAS 575a / CPSC 575a, Computational Vision and Biological PerceptionSteven Zucker

An overview of computational vision with a biological emphasis. Suitable as an introduction to biological perception for computer science and engineering students, as well as an introduction to computational vision for mathematics, psychology, and physiology students.
MW 2:30pm-3:45pm

ENAS 576b / AMTH 667b / CPSC 576b, Advanced Computational VisionSteven Zucker

Advanced view of vision from a mathematical, computational, and neurophysiological perspective. Emphasis on differential geometry, machine learning, visual psychophysics, and advanced neurophysiology. Topics include perceptual organization, shading, color, and texture.
TTh 2:30pm-3:45pm

ENAS 600a or b, Computer-Aided EngineeringMarshall Long

Aspects of computer-aided design and manufacture (CAD/CAM). The computer’s role in the mechanical design and manufacturing process; commercial tools for two- and three-dimensional drafting and assembly modeling; finite-element analysis software for modeling mechanical, thermal, and fluid systems.
HTBA

ENAS 602a, Chemical Reaction EngineeringLisa Pfefferle

Applications of physical-chemical and chemical-engineering principles to the design of chemical process reactors. Ideal reactors treated in detail in the first half of the course, practical homogeneous and catalytic reactors in the second.
MW 9am-10:15am

ENAS 603a, Energy, Mass, and Momentum ProcessesAmir Haji Akbari Balou

Application of continuum mechanics approach to the understanding and prediction of fluid flow systems that may be chemically reactive, turbulent, or multiphase.
TTh 4pm-5:15pm

ENAS 606a, Polymer PhysicsMingjiang Zhong

. A graduate-level introduction to the physics and physical chemistry of macromolecules buted Computation and Decision Making  A. Stephen Morse

Within the...

Engineering & Applied Science

Price on request