Financial Mathematics MSc

5.0
1 review
  • So far it's great and I enjoyed my time here. Met good people and made lasting friends.
    |

Postgraduate

In Uxbridge

Price on request

Description

  • Type

    Postgraduate

  • Location

    Uxbridge

  • Start date

    Different dates available

Mathematical finance is an area of applied mathematics where concepts and techniques that lie close to the heart of pure mathematics are applied routinely to solve a great variety of important practical problems arising in the day-to-day business of the world's financial institutions.

Facilities

Location

Start date

Uxbridge (Middlesex)
Brunel University, UB8 3PH

Start date

Different dates availableEnrolment now open

About this course

IELTS: 6 (min 5.5 in all areas)
Pearson: 51 (51 in all subscores)
BrunELT: 60% (min 55% in all areas)

Questions & Answers

Add your question

Our advisors and other users will be able to reply to you

Who would you like to address this question to?

Fill in your details to get a reply

We will only publish your name and question

Reviews

5.0
  • So far it's great and I enjoyed my time here. Met good people and made lasting friends.
    |
100%
4.6
excellent

Course rating

Recommended

Centre rating

Rachel

5.0
07/03/2018
What I would highlight: So far it's great and I enjoyed my time here. Met good people and made lasting friends.
What could be improved: .
Would you recommend this course?: Yes
*All reviews collected by Emagister & iAgora have been verified

This centre's achievements

2018

All courses are up to date

The average rating is higher than 3.7

More than 50 reviews in the last 12 months

This centre has featured on Emagister for 14 years

Subjects

  • Probability
  • GCSE Mathematics
  • Derivatives
  • Financial Training
  • IT risk
  • Project
  • Financial
  • Finance
  • Financial Mathematics
  • Mathematics
  • Approach
  • Computing
  • Credit
  • Market
  • Forecasting
  • Risk Management
  • Risk

Course programme

Course Content Programme structure

The programme offers five "compulsory" modules, taken by all candidates, along with a variety of elective modules from which students can pick and choose. There are lectures, examinations and coursework in eight modules altogether, including the five compulsory modules. Additionally, all students complete an individual research project on a selected topic in financial mathematics, leading to the submission of a dissertation.

Compulsory modules

Probability and stochastics. This course provides the basics of the probabilistic ideas and mathematical language needed to fully appreciate the modern mathematical theory of finance and its applications. Topics include: measurable spaces, sigma-algebras, filtrations, probability spaces, martingales, continuous-time stochastic processes, Poisson processes, Brownian motion, stochastic integration, Ito calculus, log-normal processes, stochastic differential equations, the Ornstein-Uhlenbeck process.

Financial markets. This course is designed to cover basic ideas about financial markets, including market terminology and conventions. Topics include: theory of interest, present value, future value, fixed-income securities, term structure of interest rates, elements of probability theory, mean-variance portfolio theory, the Markowitz model, capital asset pricing model (CAPM), portfolio performance, risk and utility, portfolio choice theorem, risk-neutral pricing, derivatives pricing theory, Cox-Ross-Rubinstein formula for option pricing.

Option pricing theory. The key ideas leading to the valuation of options and other important derivatives will be introduced. Topics include: risk-free asset, risky assets, single-period binomial model, option pricing on binomial trees, dynamical equations for price processes in continuous time, Radon-Nikodym process, equivalent martingale measures, Girsanov's theorem, change of measure, martingale representation theorem, self-financing strategy, market completeness, hedge portfolios, replication strategy, option pricing, Black-Scholes formula.

Interest rate theory. An in-depth analysis of interest-rate modelling and derivative pricing will be presented. Topics include: interest rate markets, discount bonds, the short rate, forward rates, swap rates, yields, the Vasicek model, the Hull-White model, the Heath-Jarrow-Merton formalism, the market model, bond option pricing in the Vasicek model, the positive interest framework, option and swaption pricing in the Flesaker-Hughston model.

Financial computing I. The idea of this course is to enable students to learn how the theory of pricing and hedging can be implemented numerically. Topics include: (i) The Unix/Linux environment, C/C++ programming: types, decisions, loops, functions, arrays, pointers, strings, files, dynamic memory, preprocessor; (ii) data structures: lists and trees; (iii) introduction to parallel (multi-core, shared memory) computing: open MP constructs; applications to matrix arithmetic, finite difference methods, Monte Carlo option pricing.

Financial Mathematics Dissertation

Towards the end of the Spring Term, students will choose a topic for an individual research project, which will lead to the preparation and submission of an MSc dissertation. The project supervisor will usually be a member of the Brunel financial mathematics group. In some cases the project may be overseen by an external supervisor based at a financial institution or another academic institution.

Elective modules

Portfolio theory. The general theory of financial portfolio based on utility theory will be introduced in this module. Topics include: utility functions, risk aversion, the St Petersburg paradox, convex dual functions, dynamic asset pricing, expectation, forecast and valuation, portfolio optimisation under budget constraints, wealth consumption, growth versus income.

Information in finance with application to credit risk management. An innovative and intuitive approach to asset pricing, based on the modelling of the flow of information in financial markets, will be introduced in this module. Topics include: information-based asset pricing – a new paradigm for financial risk management; modelling frameworks for cash flows and market information; applications to credit risk modelling, defaultable discount bond dynamics, the pricing and hedging of credit-risky derivatives such as credit default swaps (CDS), asset dependencies and correlation modelling, and the origin of stochastic volatility.

Mathematical theory of dynamic asset pricing. Financial modelling and risk management involve not only the valuation and hedging of various assets and their positions, but also the problem of asset allocation. The traditional approach of risk-neutral valuation treats the problem of valuation and hedging, but is limited when it comes to understanding asset returns and the behaviour of asset prices in the real-world 'physical' probability measure. The pricing kernel approach, however, treats these different aspects of financial modelling in a unified and coherent manner. This module introduces in detail the techniques of pricing kernel methodologies, and its applications to interest-rete modelling, foreign exchange market, and inflation-linked products. Another application concerns the modelling of financial markets where prices admit jumps. In this case, the relation between risk, risk aversion, and return is obscured in traditional approaches, but is made clear in the pricing kernel method. The module also covers the introduction to the theory of Lévy processes for jumps and its applications to dynamic asset pricing in the modern setting.

Financial computing II. In this parallel-computing module students will learn how to harness the power of a multi-core computer and Open MP to speed up a task by running it in parallel. Topics include: shared and distributed memory concepts; Message Passing and introduction to MPI constructs; communications models, applications and pitfalls; open MP within MPI; introduction to Graphics Processors; GPU computing and the CUDA programming model; CUDA within MPI; applications to matrix arithmetic, finite difference methods, Monte Carlo option pricing.

Statistics for finance. This module covers: (a) return and loss distributions: statistical properties of return distributions, tests for normality and QQ plots, heavy-tail distributions; (b) risk measures: value-at-risk, expected shortfall, estimation of risk measures, coherent risk measures, forecasting risk measures, backtesting methods; and (c) time series models: mean, autocovariance, autocorrelation, stationarity, parameter estimation, model selection and forecasting, white noise process, autoregressive and moving average (ARMA) processes, generalized autoregressive conditional heteroscedasticity (GARCH) processes, forecasting risk measures using these processes.

Read more about the structure of postgraduate degrees at Brunel and what you will learn on the course.


Additional information

Teaching and Assessment Assessment Assessment is by a combination of coursework, examination, and dissertation. Examinations are held in May. The MSc degree is awarded if the student reaches the necessary overall standard on the taught part of the course and submits a dissertation that is judged to be of the required standard. Specifically, to qualify for the MSc degree, the student must: (a) take examinations in eight modules including the four compulsory modules, (b) attain the minimum grade profile (or better) required for a Masters degree and (c) submit a dissertation of the required standard. If a student does not achieve the requirements for the degree of MSc, they may, if eligible, be awarded a Postgraduate Diploma. The modules will be taught by: Dr Elena Boguslavskaya Professor Dorje C Brody (Programme Director) Dr Paresh Date Professor Lane P Hughston Dr Anne-Sophie Kaloghiros Dr Matthias Maischak Dr David Meier Dr Veronica Vinciotti

Financial Mathematics MSc

Price on request